The potential benefits of creatine and conjugated linoleic acid as adjuncts to resistance training in older adults

Publication: Applied Physiology, Nutrition, and Metabolism
8 January 2008

Abstract

Human aging is associated with a significant reduction in muscle mass (sarcopenia) resulting in muscle weakness and functional limitations in the elderly. Sarcopenia has been associated with mitochondrial dysfunction and the accumulation of mtDNA deletions. Resistance training increases muscle strength and size and can increase mitochondrial capacity and decrease oxidative stress in older adults. Creatine monohydrate (CrM) and conjugated linoleic acid (CLA) have biological effects that could enhance some of the beneficial effects of resistance training in older adults (i.e., ↑ fat-free mass, ↓ total body fat). We have completed two resistance-training studies with CrM alone and CrM + CLA supplementation in older adults to evaluate the independent effects of exercise and dietary supplements, as well as  their interactive effects. Our studies, and several others, have found that CrM enhanced the resistance exercise mediated gains in fat-free mass and strength. More recently, we found that the addition of CLA also lead to a significant reduction of body fat after six months of resistance training in older adults. Older adults have fewer wild-type mtDNA copies and higher amounts of mtDNA deletions as compared with younger adults in mature skeletal muscle; however, these deletions are not seen in the satellite cell-derived myoblast cultures. These findings, and the fact that mtDNA deletions are lower and wild-type mtDNA copy number is higher after resistance training in older adults, suggests that activation of satellite cells secondary to resistance exercise-induced muscle damage can dilute or “shift” the proportion of mtDNA genotype towards that of a younger adult. Recent evidence suggests that CrM supplementation in combination with strength training can enhance satellite cell activation and total myonuclei number per muscle fiber in young men. Future studies are required to determine whether the mitochondrial adaptations to resistance exercise in older adults are further enhanced with CrM supplementation and whether this is due to increased recruitment of satellite cells. It will also be important to determine whether these changes are maintained over a longer time period.

Résumé

Dans le processus du vieillissement chez l’humain, la diminution importante de la masse musculaire (sarcopénie) entraîne de la faiblesse musculaire et des limitations fonctionnelles. D’après des études, la sarcopénie est associée à une dysfonction mitochondriale et à l’accumulation de délétions d’ADN mitochondrial (mtDNA). L’entraînement à la force augmente la masse et la force des muscles et peut accroître la capacité mitochondriale et diminuer le stress oxydatif chez les personnes âgées. Le monohydrate de créatine (CrM) et l’acide linoléique conjugué (CLA) suscitent des effets biologiques qui pourraient améliorer certains des effets bénéfiques de l’entraînement à la force chez les personnes âgées comme l’augmentation de la masse dégraissée et la diminution du contenu de gras corporel. Nous avons réalisé deux études sur l’effet d’une supplémentation en CrM seul et en CrM combiné à CLA, durant un programme d’entraînement à la force afin d’évaluer les effets indépendants de l’entraînement physique et des suppléments alimentaires de même que leurs interactions. Nos études et quelques autres aussi démontrent que le CrM améliore les gains obtenus en ce qui concerne la masse corporelle dégraissée et de force causés par l’entraînement à la force. Il y a peu de temps, nous avons observé que la supplémentation en CLA au cours d’un programme d’entraînement à la force d’une durée de six mois causait une diminution importante du contenu de gras corporel chez des personnes âgées. Comparativement aux plus jeunes, les personnes âgées présentent moins de copies de mtDNA de type sauvage et plus de délétions de mtDNA dans leurs muscles squelettiques arrivés à maturité; on ne retrouve cependant pas ces délétions dans les cellules satellites obtenues à partir des cultures de myoblastes. À cause de ces observations et de la moins grande quantité de délétions de mtDNA de même que du plus grand nombre de copies de mtDNA de type sauvage à la suite d’un programme d’entraînement à la force chez les personnes âgées, il apparaît que l’activation des cellules satellites consécutive aux lésions des muscles causées par l’exercice physique peut diminuer ou « convertir » la proportion du génotype mtDNA en un type observé chez les plus jeunes. Des études très récentes suggèrent que la supplémentation en CrM combinée à l’entraînement à la force peut améliorer l’activation des cellules satellites et le nombre total de noyaux dans la fibre musculaire chez les jeunes hommes. D’autres études sont nécessaires pour vérifier si les adaptations des mitochondries consécutives aux exercices de force réalisées chez les personnes âgées sont améliorées par la supplémentation en CrM et si elles sont dues à une meilleure sollicitation des cellules satellites. Il sera aussi important d’établir si ces adaptations demeurent durant une longue période de temps.

Get full access to this article

View all available purchase options and get full access to this article.

References

Aiken, J., Bua, E., Cao, Z., Lopez, M., Wanagat, J., McKenzie, D., et al. 2002. Mitochondrial DNA deletion mutations and sarcopenia. Ann. N.Y. Acad. Sci. 959: 412–423.
Antolic, A., Roy, B.D., Tarnopolsky, M.A., Zernicke, R.F., Wohl, G.R., Shaughnessy, S.G., et al. 2007. Creatine monohydrate increases bone mineral density in young Sprague–Dawley rats. Med. Sci. Sports Exerc. 39: 816–820.
Balagopal, P., Rooyackers, O.E., Adey, D.B., Ades, P.A., and Nair, K.S. 1997. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am. J. Physiol. 273: E790–E800.
Bassey, E.J., Fiatarone, M.A., O'Neill, E.F., Kelly, M., Evans, W.J., and Lipsitz, L.A. 1992. Leg extensor power and functional performance in very old men and women. Clin. Sci. (Lond.), 82: 321–327.
Becque, M.D., Lochmann, J.D., and Melrose, D.R. 2000. Effects of oral creatine supplementation on muscular strength and body composition. Med. Sci. Sports Exerc. 32: 654–658.
Bermon, S., Venembre, P., Sachet, C., Valour, S., and Dolisi, C. 1998. Effects of creatine monohydrate ingestion in sedentary and weight-trained older adults. Acta Physiol. Scand. 164: 147–155.
Berneis, K., Ninnis, R., Haussinger, D., and Keller, U. 1999. Effects of hyper- and hypoosmolality on whole body protein and glucose kinetics in humans. Am. J. Physiol. 276: E188–E195.
Blankson, H., Stakkestad, J.A., Fagertun, H., Thom, E., Wadstein, J., and Gudmundsen, O. 2000. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J. Nutr. 130: 2943–2948.
Brose, A., Parise, G., and Tarnopolsky, M.A. 2003. Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 58: 11–19.
Bua, E.A., McKiernan, S.H., Wanagat, J., McKenzie, D., and Aiken, J.M. 2002. Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. J. Appl. Physiol. 92: 2617–2624.
Bua, E., Johnson, J., Herbst, A., Delong, B., McKenzie, D., Salamat, S., et al. 2006. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am. J. Hum. Genet. 79: 469–480.
Butterfield, G.E., Thompson, J., Rennie, M.J., Marcus, R., Hintz, R.L., and Hoffman, A.R. 1997. Effect of rhGH and rhIGF-I treatment on protein utilization in elderly women. Am. J. Physiol. 272: E94–E99.
Camougrand, N., and Rigoulet, M. 2001. Aging and oxidative stress: studies of some genes involved both in aging and in response to oxidative stress. Respir. Physiol. 128: 393–401.
Campbell, W.W., Joseph, L.J., Davey, S.L., Cyr-Campbell, D., Anderson, R.A., and Evans, W.J. 1999. Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older men. J. Appl. Physiol. 86: 29–39.
Campos, G.E., Luecke, T.J., Wendeln, H.K., Toma, K., Hagerman, F.C., Murray, T.F., et al. 2002. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 88: 50–60.
Carter, J.M., Bemben, D.A., Knehans, A.W., Bemben, M.G., and Witten, M.S. 2005. Does nutritional supplementation influence adaptability of muscle to resistance training in men aged 48 to 72 years. J. Geriatr. Phys. Ther. 28: 40–47.
Casey, A., Constantin-Teodosiu, D., Howell, S., Hultman, E., and Greenhaff, P.L. 1996. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am. J. Physiol. 271: E31–E37.
Castillo, E.M., Goodman-Gruen, D., Kritz-Silverstein, D., Morton, D.J., Wingard, D.L., and Barrett-Connor, E. 2003. Sarcopenia in elderly men and women: the Rancho Bernardo study. Am. J. Prev. Med. 25: 226–231.
Charette, S.L., McEvoy, L., Pyka, G., Snow-Harter, C., Guido, D., Wiswell, R.A., et al. 1991. Muscle hypertrophy response to resistance training in older women. J. Appl. Physiol. 70: 1912–1916.
Chilibeck, P.D., Chrusch, M.J., Chad, K.E., Shawn Davison, K., and Burke, D.G. 2005. Creatine monohydrate and resistance training increase bone mineral content and density in older men. J. Nutr. Health Aging, 9: 352–353.
Choi, Y., Kim, Y.C., Han, Y.B., Park, Y., Pariza, M.W., and Ntambi, J.M. 2000. The trans-10,cis-12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase 1 gene expression in 3T3–L1 adipocytes. J. Nutr. 130: 1920–1924.
Chrusch, M.J., Chilibeck, P.D., Chad, K.E., Davison, K.S., and Burke, D.G. 2001. Creatine supplementation combined with resistance training in older men. Med. Sci. Sports Exerc. 33: 2111–2117.
Clark, K.M., Bindoff, L.A., Lightowlers, R.N., Andrews, R.M., Griffiths, P.G., Johnson, M.A., et al. 1997. Reversal of a mitochondrial DNA defect in human skeletal muscle. Nat. Genet. 16: 222–224.
Clevenger, C.M., Parker Jones, P., Tanaka, H., Seals, D.R., and DeSouza, C.A. 2002. Decline in insulin action with age in endurance-trained humans. J. Appl. Physiol. 93: 2105–2111.
Cree, M.G., Newcomer, B.R., Katsanos, C.S., Sheffield-Moore, M., Chinkes, D., Aarsland, A., et al. 2004. Intramuscular and liver triglycerides are increased in the elderly. J. Clin. Endocrinol. Metab. 89: 3864–3871.
Dangott, B., Schultz, E., and Mozdziak, P.E. 2000. Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int. J. Sports Med. 21: 13–16.
Dhiman, T.R., Satter, L.D., Pariza, M.W., Galli, M.P., Albright, K., and Tolosa, M.X. 2000. Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. J. Dairy Sci. 83: 1016–1027.
Doherty, T.J., and Brown, W.F. 1997. Age-related changes in the twitch contractile properties of human thenar motor units. J. Appl. Physiol. 82: 93–101.
Earnest, C.P., Snell, P.G., Rodriguez, R., Almada, A.L., and Mitchell, T.L. 1995. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physiol. Scand. 153: 207–209.
Eijnde, B.O., Van Leemputte, M., Goris, M., Labarque, V., Taes, Y., Verbessem, P., et al. 2003. Effects of creatine supplementation and exercise training on fitness in men 55–75 yr old. J. Appl. Physiol. 95: 818–828.
Evans, W.J. 1995. Effects of exercise on body composition and functional capacity of the elderly. J. Gerontol. A Biol. Sci. Med. Sci. 50 Spec No: 147–50.
Evans, W.J. 1998. Exercise and nutritional needs of elderly people: effects on muscle and bone. Gerodontology, 15: 15–24.
Fiatarone, M.A., Marks, E.C., Ryan, N.D., Meredith, C.N., Lipsitz, L.A., and Evans, W.J. 1990. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA, 263: 3029–3034.
Fiatarone, M.A., O'Neill, E.F., Ryan, N.D., Clements, K.M., Solares, G.R., Nelson, M.E., et al. 1994. Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 330: 1769–1775.
Forsberg, A.M., Nilsson, E., Werneman, J., Bergstrom, J., and Hultman, E. 1991. Muscle composition in relation to age and sex. Clin. Sci. (Lond.), 81: 249–256.
Francaux, M., and Poortmans, J.R. 1999. Effects of training and creatine supplement on muscle strength and body mass. Eur. J. Appl. Physiol. Occup. Physiol. 80: 165–168.
Frontera, W.R., Meredith, C.N., O'Reilly, K.P., Knuttgen, H.G., and Evans, W.J. 1988. Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J. Appl. Physiol. 64: 1038–1044.
Frontera, W.R., Hughes, V.A., Fielding, R.A., Fiatarone, M.A., Evans, W.J., and Roubenoff, R. 2000. Aging of skeletal muscle: a 12-yr longitudinal study. J. Appl. Physiol. 88: 1321–1326.
Fuchi, T., Iwaoka, K., Higuchi, M., and Kobayashi, S. 1989. Cardiovascular changes associated with decreased aerobic capacity and aging in long-distance runners. Eur. J. Appl. Physiol. Occup. Physiol. 58: 884–889.
Gianni, P., Jan, K.J., Douglas, M.J., Stuart, P.M., and Tarnopolsky, M.A. 2004. Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp. Gerontol. 39: 1391–1400.
Gillette-Guyonnet, S., Nourhashemi, F., Andrieu, S., Cantet, C., Albarede, J.L., Vellas, B., et al. 2003. Body composition in French women 75+ years of age: the EPIDOS study. Mech. Ageing Dev. 124: 311–316.
Giresi, P.G., Stevenson, E.J., Theilhaber, J., Koncarevic, A., Parkington, J., Fielding, R.A., et al. 2005. Identification of a molecular signature of sarcopenia. Physiol. Genomics, 21: 253–263.
Golden, T.R., and Melov, S. 2001. Mitochondrial DNA mutations, oxidative stress, and aging. Mech. Ageing Dev. 122: 1577–1589.
Greenlund, L.J., and Nair, K.S. 2003. Sarcopenia–consequences, mechanisms, and potential therapies. Mech. Ageing Dev. 124: 287–299.
Guralnik, J.M., Ferrucci, L., Simonsick, E.M., Salive, M.E., and Wallace, R.B. 1995. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 332: 556–561.
Guthmiller, P., Van Pilsum, J.F., Boen, J.R., and McGuire, D.M. 1994. Cloning and sequencing of rat kidney L-arginine:glycine amidinotransferase. Studies on the mechanism of regulation by growth hormone and creatine. J. Biol. Chem. 269: 17556–17560.
Hagberg, J.M., Graves, J.E., Limacher, M., Woods, D.R., Leggett, S.H., Cononie, C., et al. 1989. Cardiovascular responses of 70- to 79-yr-old men and women to exercise training. J. Appl. Physiol. 66: 2589–2594.
Harman, D. 1972. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20: 145–147.
Harris, R.C., Soderlund, K., and Hultman, E. 1992. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. (Lond.), 83: 367–374.
Hasten, D.L., Pak-Loduca, J., Obert, K.A., and Yarasheski, K.E. 2000. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78–84 and 23–32 yr olds. Am. J. Physiol. Endocrinol. Metab. 278: E620–E626.
Hespel, P., Op't Eijnde, B., Van Leemputte, M., Urso, B., Greenhaff, P.L., Labarque, V., et al. 2001. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J. Physiol. 536: 625–633.
Hultman, E., Soderlund, K., Timmons, J.A., Cederblad, G., and Greenhaff, P.L. 1996. Muscle creatine loading in men. J. Appl. Physiol. 81: 232–237.
Janssen, I., Shepard, D.S., Katzmarzyk, P.T., and Roubenoff, R. 2004. The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 52: 80–85.
Jowko, E., Ostaszewski, P., Jank, M., Sacharuk, J., Zieniewicz, A., Wilczak, J., et al. 2001. Creatine and beta-hydroxy-beta-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition, 17: 558–566.
Juhn, M.S., O'Kane, J.W., and Vinci, D.M. 1999. Oral creatine supplementation in male collegiate athletes: a survey of dosing habits and side effects. J. Am. Diet. Assoc. 99: 593–595.
Kelley, D.E., He, J., Menshikova, E.V., and Ritov, V.B. 2002. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes, 51: 2944–2950.
Klitgaard, H., Mantoni, M., Schiaffino, S., Ausoni, S., Gorza, L., Laurent-Winter, C., et al. 1990. Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol. Scand. 140: 41–54.
Klivenyi, P., Ferrante, R.J., Matthews, R.T., Bogdanov, M.B., Klein, A.M., Andreassen, O.A., et al. 1999. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat. Med. 5: 347–350.
Kovalenko, S.A., Kopsidas, G., Kelso, J.M., and Linnane, A.W. 1997. Deltoid human muscle mtDNA is extensively rearranged in old age subjects. Biochem. Biophys. Res. Commun. 232: 147–152.
Kreider, R.B., Ferreira, M., Wilson, M., Grindstaff, P., Plisk, S., Reinardy, J., et al. 1998. Effects of creatine supplementation on body composition, strength, and sprint performance. Med. Sci. Sports Exerc. 30: 73–82.
Kreider, R.B., Ferreira, M.P., Greenwood, M., Wilson, M., and Almada, A.L. 2002. Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers. J. Strength Cond. Res. 16: 325–334.
Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., et al. 2005. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science, 309: 481–484.
Lau, E.M., Lynn, H.S., Woo, J.W., Kwok, T.C., and Melton, L.J., 3rd. 2005. Prevalence of and risk factors for sarcopenia in elderly Chinese men and women. J. Gerontol. A Biol. Sci. Med. Sci. 60: 213–216.
Laukkanen, P., Heikkinen, E., and Kauppinen, M. 1995. Muscle strength and mobility as predictors of survival in 75–84-year-old people. Age Ageing, 24: 468–473.
Lawler, J.M., Barnes, W.S., Wu, G., Song, W., and Demaree, S. 2002. Direct antioxidant properties of creatine. Biochem. Biophys. Res. Commun. 290: 47–52.
Leveille, S.G. 2004. Musculoskeletal aging. Curr. Opin. Rheumatol. 16: 114–118.
Li, Y., Seifert, M.F., Ney, D.M., Grahn, M., Grant, A.L., Allen, K.G., et al. 1999. Dietary conjugated linoleic acids alter serum IGF-I and IGF binding protein concentrations and reduce bone formation in rats fed (n-6) or (n-3) fatty acids. J. Bone Miner. Res. 14: 1153–1162.
Louis, M., Lebacq, J., Poortmans, J.R., Belpaire-Dethiou, M.C., Devogelaer, J.P., Van Hecke, P., et al. 2003. Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve, 27: 604–610.
Mahoney, D.J., and Tarnopolsky, M.A. 2005. Understanding skeletal muscle adaptation to exercise training in humans: contributions from microarray studies. Phys. Med. Rehabil. Clin. N. Am. 16: 859–873.
Mahoney, D.J., Parise, G., Melov, S., Safdar, A., and Tarnopolsky, M.A. 2005. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 19: 1498–1500.
Matthews, R.T., Yang, L., Jenkins, B.G., Ferrante, R.J., Rosen, B.R., Kaddurah-Daouk, R., et al. 1998. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington's disease. J. Neurosci. 18: 156–163.
Matthews, R.T., Ferrante, R.J., Klivenyi, P., Yang, L., Klein, A.M., Mueller, G., et al. 1999. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp. Neurol. 157: 142–149.
McCartney, N., Hicks, A.L., Martin, J., and Webber, C.E. 1996. A longitudinal trial of weight training in the elderly: continued improvements in year 2. J. Gerontol. A Biol. Sci. Med. Sci. 51: B425–B433.
Mecocci, P., Fano, G., Fulle, S., MacGarvey, U., Shinobu, L., Polidori, M.C., et al. 1999. Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic. Biol. Med. 26: 303–308.
Melov, S. 2002a. Animal models of oxidative stress, aging, and therapeutic antioxidant interventions. Int. J. Biochem. Cell Biol. 34: 1395–1400.
Melov, S. 2002b. Therapeutics against mitochondrial oxidative stress in animal models of aging. Ann. N. Y. Acad. Sci. 959: 330–340.
Melov, S., Tarnopolsky, M.A., Beckman, K., Felkey, K., and Hubbard, A. 2007. Resistance exercise reverses aging in human skeletal muscle. PLoS ONE, 2: e465.
Melton, L.J., 3rd, Khosla, S., Crowson, C.S., O'Connor, M.K., O'Fallon, W.M., and Riggs, B.L. 2000. Epidemiology of sarcopenia. J. Am. Geriatr. Soc. 48: 625–630.
Musaro, A., McCullagh, K.J., Naya, F.J., Olson, E.N., and Rosenthal, N. 1999. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature, 400: 581–585.
Olsen, S., Aagaard, P., Kadi, F., Tufekovic, G., Verney, J., Olesen, J.L., et al. 2006. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J. Physiol. 573: 525–534.
Parise, G., Mihic, S., MacLennan, D., Yarasheski, K.E., and Tarnopolsky, M.A. 2001. Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J. Appl. Physiol. 91: 1041–1047.
Parise, G., Brose, A.N., and Tarnopolsky, M.A. 2005a. Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Exp. Gerontol. 40: 173–180.
Parise, G., Phillips, S.M., Kaczor, J.J., and Tarnopolsky, M.A. 2005b. Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radic. Biol. Med. 39: 289–295.
Pariza, M.W., Park, Y., and Cook, M.E. 2000. Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc. Soc. Exp. Biol. Med. 223: 8–13.
Park, Y., Albright, K.J., Liu, W., Storkson, J.M., Cook, M.E., and Pariza, M.W. 1997. Effect of conjugated linoleic acid on body composition in mice. Lipids, 32: 853–858.
Park, Y., Albright, K.J., Storkson, J.M., Liu, W., Cook, M.E., and Pariza, M.W. 1999. Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids, 34: 243–248.
Passaquin, A.C., Renard, M., Kay, L., Challet, C., Mokhtarian, A., Wallimann, T., et al. 2002. Creatine supplementation reduces skeletal muscle degeneration and enhances mitochondrial function in mdx mice. Neuromuscul. Disord. 12: 174–182.
Payne, E.T., Yasuda, N., Bourgeois, J.M., Devries, M.C., Rodriguez, M.C., Yousuf, J., et al. 2006. Nutritional therapy improves function and complements corticosteroid intervention in mdx mice. Muscle Nerve, 33: 66–77.
Petersen, K.F., Dufour, S., Befroy, D., Garcia, R., and Shulman, G.I. 2004. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350: 664–671.
Pinkoski, C., Chilibeck, P.D., Candow, D.G., Esliger, D., Ewaschuk, J.B., Facci, M., et al. 2006. The effects of conjugated linoleic acid supplementation during resistance training. Med. Sci. Sports Exerc. 38: 339–348.
Province, M.A., Hadley, E.C., Hornbrook, M.C., Lipsitz, L.A., Miller, J.P., Mulrow, C.D., et al. 1995. The effects of exercise on falls in elderly patients. A preplanned meta-analysis of the FICSIT Trials. Frailty and injuries: cooperative studies of intervention techniques. JAMA, 273: 1341–1347.
Rawson, E.S., and Clarkson, P.M. 2000. Acute creatine supplementation in older men. Int. J. Sports Med. 21: 71–75.
Rawson, E.S., Wehnert, M.L., and Clarkson, P.M. 1999. Effects of 30 days of creatine ingestion in older men. Eur. J. Appl. Physiol. Occup. Physiol. 80: 139–144.
Richter, C., Park, J.W., and Ames, B.N. 1988. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. U.S.A. 85: 6465–6467.
Ritov, V.B., Menshikova, E.V., He, J., Ferrell, R.E., Goodpaster, B.H., and Kelley, D.E. 2005. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes, 54: 8–14.
Rogers, M.A., Hagberg, J.M., Martin, W.H., 3rd, Ehsani, A.A., and Holloszy, J.O. 1990. Decline in VO2 max with aging in master athletes and sedentary men. J. Appl. Physiol. 68: 2195–2199.
Rooyackers, O.E., Adey, D.B., Ades, P.A., and Nair, K.S. 1996. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 93: 15364–15369.
Sandoval, N., Bauer, D., Brenner, V., Coy, J.F., Drescher, B., Kioschis, P., et al. 1996. The genomic organization of a human creatine transporter (CRTR) gene located in Xq28. Genomics, 35: 383–385.
Sehat, N., Rickert, R., Mossoba, M.M., Kramer, J.K., Yurawecz, M.P., Roach, J.A., et al. 1999. Improved separation of conjugated fatty acid methyl esters by silver ion-high-performance liquid chromatography. Lipids, 34: 407–413.
Short, K.R., Vittone, J.L., Bigelow, M.L., Proctor, D.N., Rizza, R.A., Coenen-Schimke, J.M., et al. 2003. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes, 52: 1888–1896.
Smith, S.A., Montain, S.J., Matott, R.P., Zientara, G.P., Jolesz, F.A., and Fielding, R.A. 1998. Creatine supplementation and age influence muscle metabolism during exercise. J. Appl. Physiol. 85: 1349–1356.
Sullivan, P.G., Geiger, J.D., Mattson, M.P., and Scheff, S.W. 2000. Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol. 48: 723–729.
Taivassalo, T., Fu, K., Johns, T., Arnold, D., Karpati, G., and Shoubridge, E.A. 1999. Gene shifting: a novel therapy for mitochondrial myopathy. Hum. Mol. Genet. 8: 1047–1052.
Tarnopolsky, M., and Martin, J. 1999. Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology, 52: 854–857.
Tarnopolsky, M.A., Parise, G., Yardley, N.J., Ballantyne, C.S., Olatinji, S., and Phillips, S.M. 2001. Creatine-dextrose and protein-dextrose induce similar strength gains during training. Med. Sci. Sports Exerc. 33: 2044–2052.
Tarnopolsky, M.A., Mahoney, D.J., Vajsar, J., Rodriguez, C., Doherty, T.J., Roy, B.D., and Biggar, D. 2004. Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology, 62: 1771–1777.
Tarnopolsky, M., Zimmer, A., Paikin, J., Safdar, A., Aboud, A., Pearce, E. et al. 2007. Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS ONE, 2: e991.
Tracy, B.L., Ivey, F.M., Hurlbut, D., Martel, G.F., Lemmer, J.T., Siegel, E.L., et al. 1999. Muscle quality. II. Effects Of strength training in 65- to 75-yr-old men and women. J. Appl. Physiol. 86: 195–201.
Trifunovic, A., Hansson, A., Wredenberg, A., Rovio, A.T., Dufour, E., Khvorostov, I., et al. 2005. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc. Natl. Acad. Sci. U.S.A. 102: 17993–17998.
van Leemputte, M., Vandenberghe, K., and Hespel, P. 1999. Shortening of muscle relaxation time after creatine loading. J. Appl. Physiol. 86: 840–844.
Vandenberghe, K., Goris, M., Van Hecke, P., Van Leemputte, M., Vangerven, L., and Hespel, P. 1997. Long-term creatine intake is beneficial to muscle performance during resistance training. J. Appl. Physiol. 83: 2055–2063.
Vincent, K.R., Braith, R.W., Feldman, R.A., Kallas, H.E., and Lowenthal, D.T. 2002. Improved cardiorespiratory endurance following 6 months of resistance exercise in elderly men and women. Arch. Intern. Med. 162: 673–678.
Visonneau, S., Cesano, A., Tepper, S.A., Scimeca, J.A., Santoli, D., and Kritchevsky, D. 1997. Conjugated linoleic acid suppresses the growth of human breast adenocarcinoma cells in SCID mice. Anticancer Res. 17: 969–973.
Volek, J.S., Duncan, N.D., Mazzetti, S.A., Staron, R.S., Putukian, M., Gomez, A.L., et al. 1999. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med. Sci. Sports Exerc. 31: 1147–1156.
Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H.M. 1992. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem. J. 281: 21–40.
Watkins, B.A., and Seifert, M.F. 2000. Conjugated linoleic acid and bone biology. J. Am. Coll. Nutr. 19: 478S–486S.
Welle, S., Brooks, A.I., Delehanty, J.M., Needler, N., Bhatt, K., Shah, B., et al. 2004. Skeletal muscle gene expression profiles in 20–29 year old and 65–71 year old women. Exp. Gerontol. 39: 369–377.
Whipple, R.H., Wolfson, L.I., and Amerman, P.M. 1987. The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study. J. Am. Geriatr. Soc. 35: 13–20.
Willoughby, D.S., and Rosene, J. 2001. Effects of oral creatine and resistance training on myosin heavy chain expression. Med. Sci. Sports Exerc. 33: 1674–1681.
Wyss, M., and Wallimann, T. 1994. Creatine metabolism and the consequences of creatine depletion in muscle. Mol. Cell. Biochem. 133–134: 51–66.
Yarasheski, K.E., Pak-Loduca, J., Hasten, D.L., Obert, K.A., Brown, M.B., and Sinacore, D.R. 1999. Resistance exercise training increases mixed muscle protein synthesis rate in frail women and men ≥76 yr old. Am. J. Physiol. 277: E118–E125.
Yasuda, N., Glover, E.I., Phillips, S.M., Isfort, R.J., and Tarnopolsky, M.A. 2005. Sex-based differences in skeletal muscle function and morphology with short-term limb immobilization. J. Appl. Physiol. 99: 1085–1092.
Yu, L., Adams, D., and Gabel, M. 2002. Conjugated linoleic acid isomers differ in their free radical scavenging properties. J. Agric. Food Chem. 50: 4135–4140.
Zahn, J.M., Sonu, R., Vogel, H., Crane, E., Mazan-Mamczarz, K., Rabkin, R., et al. 2006. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet. 2: e115.

Information & Authors

Information

Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 33Number 1February 2008
Pages: 213 - 227

History

Received: 14 March 2007
Accepted: 15 July 2007
Version of record online: 8 January 2008

Permissions

Request permissions for this article.

Key Words

  1. sarcopenia
  2. aging
  3. mitochondrial dysfunction
  4. mitochondrial DNA deletions
  5. oxidative stress
  6. dietary supplement
  7. resistance exercise training

Mots-clés

  1. sarcopénie
  2. vieillissement
  3. dysfonction mitochondriale
  4. délétions de l’ADN mitochondriale
  5. stress oxydatif
  6. supplément alimentaire
  7. entraînement physique à la force

Authors

Affiliations

Mark A. Tarnopolsky (email: [email protected])
Department of Pediatrics and Medicine, McMaster University, HSC-2H26, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada.
Adeel Safdar
Department of Pediatrics and Medicine, McMaster University, HSC-2H26, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Conjugated Linoleic Acids: Therapeutic Agents in Functional Food Formulations
2. Indoor air pollution by solid fuel usages for cooking is longitudinally associated with possible sarcopenia in middle-aged Chinese population
3. Perspective Chapter: The Role of Modifiable Factors, Particularly Nutritional Factors, on Age-Related Sarcopenia
4. Sarcopenia, Currently a Hot Topic: A Narrative Review
5. A Five-Ingredient Nutritional Supplement and Home-Based Resistance Exercise Improve Lean Mass and Strength in Free-Living Elderly
6. Conjugated Lipids and Health
7. Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia
8. Dietary meat and protection against sarcopenia
9. Lung injury-induced skeletal muscle wasting in aged mice is linked to alterations in long chain fatty acid metabolism
10. Pros and cons of CLA consumption: an insight from clinical evidences
11. Creatine supplementation and aging musculoskeletal health
12. Contribution of creatine to protein homeostasis in athletes after endurance and sprint running
13. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group
14. Utilization of Fats and Oils for Dysphagic Patients
15. Do Frail Older Persons Need More Protein?
16. Benefits of physical activities in primary prevention of sarcopenia
17. Exercise and nutritional interventions for improving aging muscle health
18. Neuroprotective effects of creatine
19. Creatine as an antioxidant
20. Dysfunctional Nrf2–Keap1 redox signaling in skeletal muscle of the sedentary old
21. Strategies for Aging Well
22. Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults
23. Nutrition and the Aging Male
24. Pigmented creatine deposits in Amyotrophic Lateral Sclerosis central nervous system tissues identified by synchrotron Fourier Transform Infrared microspectroscopy and X-ray fluorescence spectromicroscopy
25. Assessment and Management of Fatigue in Neuromuscular Disease
26. Integrative Approach to Elderly Frailty
27. Conjugated linoleic acid (CLA): Good or bad trans fat?
28. Calories and cachexia
29. Carla Task Force on Sarcopenia: Propositions for clinical trials
30. Life Cycle Concerns
31. Mitochondrial DNA shifting in older adults following resistance exercise trainingThis paper article is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic Machines, and has undergone the Journal’s usual peer review process.
32. The Essentials of Essential Fatty Acids
33. Creatine and Its Potential Therapeutic Value for Targeting Cellular Energy Impairment in Neurodegenerative Diseases
34. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media