Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Abstract

Cold antihydrogen has been produced at CERN (Amoretti et al. (Nature, 419, 456 (2002)), Gabrielse et al. (Phys. Rev. Lett. 89, 213401 (2002))), with the aim of performing a high-precision spectroscopic comparison with hydrogen as a test of the CPT symmetry. Hydrogen, a unique system used for the development of quantum mechanics and quantum electrodynamics, has been continuously used to produce high-precision tests of theories and measurements of fundamental constants and can lead to a very sensitive search for CPT violation. After the initial production of cold antihydrogen atoms by the ATHENA group, the ALPHA Collaboration (http://alpha.web.cern.ch/) has set forth on an experiment to trap and perform high-resolution laser spectroscopy on the 1S-2S transition of both atoms. In this contribution, we will review the motivations, goals, techniques, and recent developments towards this fundamental physics test. We present new discussion on predicted lineshapes for the 1S-2S spectroscopy of trapped atoms in a regime not discussed before.

Résumé

Nous avons produit de l’anti-hydrogène au CERN (Amoretti et al. (Nature, 419, 456 (2002)), Gabrielse et al. (Phys. Rev. Lett. 89, 213401 (2002))), pour faire des comparaisons spectroscopiques de haute précision avec l’hydrogène dans le cadre d’un test de la symétrie CPT. L’hydrogène, qui a joué un rôle unique dans le développement de la mécanique quantique et de l’électrodynamique quantique, a été utilisé continuellement dans des tests de haute précision des théories et des mesures des constantes fondamentales et peut nous conduire à une recherche très précise de la violation CPT. Après que le groupe ATHENA ait produit l’anti-hydrogène froid, l’équipe ALPHA (http://alpha.web.cern.ch/) a développé un montage pour piéger les deux types d’atome et faire des mesures de spectroscopie laser de haute précision des transitions 1S-2S dans les deux types d’atomes. Nous passons ici en revue les motivations, les buts, les techniques et les développements récents de ce test fondamental en physique. Nous présentons de nouvelles idées sur la forme des lignes en spectroscopie 1S-2S pour des atomes piégés dans un régime qui n’a pas encore été discuté.

Get full access to this article

View all available purchase options and get full access to this article.

References

1
.
G. Lüders. Ann. Phys. 2, 1 (1957).
2
.
T. Hänsch. Rev. Mod. Phys. 78, 1297 (2006).
3
.
M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, C. Carraro, C.L. Cesar, M. Charlton, M.J.T. Collier, M. Doser, V. Filippini, K.S. Fine, A. Fontana, M.C. Fujiwara, R. Funakoshi, P. Genova, J.S. Hangst, R.S. Hayano, M.H. Holzscheiter, L.V. Jørgensen, V. Lagomarsino, R. Landua, D. Lindelöf, E. Lodi Rizzini, M. Macrì, N. Madsen, G. Manuzio, M. Marchesotti, P. Montagna, H. Pruys, C. Regenfus, P. Riedler, J. Rochet, A. Rotondi, G. Rouleau, G. Testera, A. Variola, T.L. Watson, and D.P. van der Werf (ATHENA Collaboration). Nature, 419, 456 (2002) .
4
.
G. Gabrielse, N.S. Bowden, P. Oxley, A. Speck, C.H. Storry, J.N. Tan, M. Wessels, D. Grzonka, W. Oelert, G. Schepers, T. Sefzick, J. Walz, H. Pittner, T.W. Hänsch, and E.A. Hessels (ATRAP Collaboration). Phys. Rev. Lett. 89, 213401 (2002).
5
.
G.B. Andresen, W. Bertsche, A. Boston, P.D. Bowe, C.L. Cesar, S. Chapman, M. Charlton, M. Chartier, A. Deutsch, J. Fajans, M.C. Fujiwara, R. Funakoshi, D.R. Gill, K. Gomberoff, J.S. Hangst, R.S. Hayano, R. Hydomako, M.J. Jenkins, L.V. Jørgensen, L. Kurchaninov, N. Madsen, P. Nolan, K. Olchanski, A. Olin, A. Povilus, F. Robicheaux, E. Sarid, D.M. Silveira, J.W. Storey, H.H. Telle, R.I. Thompson, D.P. van der Werf, J.S. Wurtele, and Y. Yamazaki (ALPHA Collaboration). Phys. Rev. Lett. 98, 023402 (2007) and refs. cited therein.
6
.
G.B. Andresen, W. Bertsche, A. Boston, P.D. Bowe, C.L. Cesar, S. Chapman, M. Charlton, M. Chartier, A. Deutsch, J. Fajans, M.C. Fujiwara, R. Funakoshi, D.R. Gill, K. Gomberoff, J.S. Hangst, R.S. Hayano, R. Hydomako, M.J. Jenkins, L.V. Jørgensen, L. Kurchaninov, N. Madsen, P. Nolan, K. Olchanski, A. Olin, R.D. Page, A. Povilus, F. Robicheaux, E. Sarid, D.M. Silveira, J.W. Storey, R.I. Thompson, D.P. van der Werf, J.S. Wurtele, and Y. Yamazaki (ALPHA Collaboration). J. Phys. B At. Mol. Opt. Phys. 41, 011001 (2008).
7
.
N. Madsen, M. Amoretti, C. Amsler, G. Bonomi, P.D. Bowe, C. Carraro, C.L. Cesar, M. Charlton, M. Doser, A. Fontana, M.C. Fujiwara, R. Funakoshi, P. Genova, J.S. Hangst, R.S. Hayano, L.V. Jørgensen, A. Kellerbauer, V. Lagomarsino, R. Landua, E. Lodi-Rizzini, M. Macri, D. Mitchard, P. Montagna, H. Pruys, C. Regenfus, A. Rotondi, G. Testera, A. Variola, L. Venturelli, D.P. van der Werf, Y. Yamazaki, and N. Zurlo (ATHENA Collaboration). Phys. Rev. Lett. 94, 033403 (2005).
8
.
G.B. Andresen, W. Bertsche, P.D. Bowe, C.C. Bray, E. Butler, C.L. Cesar, S. Chapman, M. Charlton, J. Fajans, M.C. Fujiwara, R. Funakoshi, D.R. Gill, J.S. Hangst, W.N. Hardy, R.S. Hayano, M.E. Hayden, A.J. Humphries, R. Hydomako, M.J. Jenkins, L.V. Jørgensen, L. Kurchaninov, R. Lambo, N. Madsen, P. Nolan, K. Olchanski, A. Olin, R.D. Page, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid, S. Seif El Nasr, D.M. Silveira, J.W. Storey, R.I. Thompson, D.P. van der Werf, J.S. Wurtele, and Y. Yamazakim. AIP Conf. Proc. 1037, 241 (2008).
9
.
F. Robicheaux. Phys. Rev. A, 70, 022510 (2004).
10
.
C.L. Taylor, J.J. Zhang, and F. Robicheaux. J. Phys. B, 39, 4945 (2006).
11
.
T. Pohl, H.R. Sadeghpour, Y. Nagata, and Y. Yamazaki. Phys. Rev. Lett. 97, 213001 (2006).
12
.
C.L. Cesar, F. Robicheaux, and N. Zagury. Manuscript in preparation. Phys. Rev. A, (2008).
13
.
I.D. Setija, H.G.C. Werij, O.J. Luiten, M.W. Reynolds, T.W. Hijmans, and J.T.M. Walraven. Phys. Rev. Lett. 70, 2257 (1993).
14
.
D. Kielpinski. Phys. Rev. A, 73, 063407 (2006).
15
.
C.L. Cesar and D. Kleppner. Phys. Rev. A, 59, 4564 (1999).
16
.
C.L. Cesar, D.G. Fried, T.C. Killian, A.D. Polcyn, J.C. Sandberg, I.A. Yu, T.J. Greytak, D. Kleppner, and J.M. Doyle. Phys. Rev. Lett. 77, 255 (1996).
17
.
C.L. Cesar. Phys. Rev. A, 64, 023418 (2001).
18
.
F. Biraben, M. Bassini, and B. Cagnac. J. Phys. 40, 445 (1979).
19
.
J.C. Sandberg. Ph.D. thesis, Massachusetts Institute of Technology. Unpublished. 1993.
20
.
Wolfram Research, Inc. Mathematica, Champaign, Ill., USA. 2005.
21
.
M.C. Fujiwara, G.B. Andresen, W. Bertsche, P.D. Bowe, C.C. Bray, E. Butler, C.L. Cesar, S. Chapman, M. Charlton, J. Fajans, R. Funakoshi, D.R. Gill, J.S. Hangst, W.N. Hardy, R.S. Hayano, M.E. Hayden, A.J. Humphries, R. Hydomako, M.J. Jenkins, L.V. Jørgensen, L. Kurchaninov, W. Lai, R. Lambo, N. Madsen, P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid, S. Seif El Nasr, D.M. Silveira, J.W. Storey, R.I. Thompson, D.P. van der Werf, L. Wasilenko, J.S. Wurtele, and Y. Yamazaki. AIP Conf. Proc. 1037, 208 (2008).

Information & Authors

Information

Published In

cover image Canadian Journal of Physics
Canadian Journal of Physics
Volume 87Number 7July 2009
Pages: 791 - 797

History

Received: 4 November 2008
Accepted: 25 November 2008
Version of record online: 1 October 2009

Notes

This paper was presented at the International Conference on Precision Physics of Simple Atomic Systems, held at University of Windsor, Windsor, Ontario, Canada on 21–26 July 2008.

Permissions

Request permissions for this article.

Key Words

  1. 36.10.–k
  2. 32.60.+i
  3. 37.10.Gh

Authors

Affiliations

Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil.
G. B. Andresen
Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.
W. Bertsche
Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom.
P. D. Bowe
Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.
C. C. Bray
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
E. Butler
Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom.
S. Chapman
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
M. Charlton
Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom.
J. Fajans
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
M. C. Fujiwara
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
R. Funakoshi
Department of Physics, University of Tokyo, Tokyo 113-0033, Japan.
D. R. Gill
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
J. S. Hangst
Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.
W. N. Hardy
Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z4, Canada.
R. S. Hayano
Department of Physics, University of Tokyo, Tokyo 113-0033, Japan.
M. E. Hayden
Department of Physics, Simon Fraser University, Burnaby BC V5A 1S6, Canada.
A. J. Humphries
Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom.
R. Hydomako
Department of Physics and Astronomy, University of Calgary, Calgary AB T2N 1N4, Canada.
M. J. Jenkins
Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom.
L. V. Jørgensen
Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom.
L. Kurchaninov
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
R. Lambo
Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil.
N. Madsen
Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom.
P. Nolan
Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK.
K. Olchanski
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
A. Olin
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
R. D. Page
Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK.
A. Povilus
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
P. Pusa
Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK.
F. Robicheaux
Department of Physics, Auburn University, Auburn, AL 36849-5311, USA.
E. Sarid
Department of Physics, NRCN-Nuclear Research Center Negev, Beer Sheva, IL-84190, Israel.
S. Seif El Nasr
Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z4, Canada.
D. M. Silveira
Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
J. W. Storey
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
R. I. Thompson
Department of Physics and Astronomy, University of Calgary, Calgary AB T2N 1N4, Canada.
D. P. van der Werf
Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom.
J. S. Wurtele
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
Y. Yamazaki
Atomic Physics Laboratory, RIKEN, Saitama 351-0198, Japan.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Capture of an external anion beam into a linear Paul trap
2. Loading of a continuous anion beam into a Penning trap with a view to laser cooling
3. Ultracold Anions for High-Precision Antihydrogen Experiments
4. A sensitive detection method for high resolution spectroscopy of trapped antihydrogen, hydrogen and other trapped species
5. An experimental limit on the charge of antihydrogen
6. Using stochastic acceleration to place experimental limits on the charge of antihydrogen
7. Future Prospects and Conclusion
8. Antihydrogen annihilation reconstruction with the ALPHA silicon detector
9. Atomic physics techniques for studying nuclear ground state properties, fundamental interactions and symmetries: status and perspectives
10. Atomic physics techniques for studying nuclear ground state properties, fundamental interactions and symmetries: status and perspectives
11. A new trap loading mechanism for hydrogenThis paper was presented at the International Conference on Precision Physics of Simple Atomic Systems, held at University of Windsor, Windsor, Ontario, Canada on 21–26 July 2008.
12. Aspects of neutral atom traps for antihydrogen spectroscopy

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physics

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media