Observation of the chemiluminescent NO + O → NO2 + reaction in the upper mesospheric dark polar regions by OSIRIS on Odin

Publication: Canadian Journal of Physics
26 September 2009

Abstract

The visible and near infrared continuum spectrum produced by the NO + O → NO2 + hv chemiluminescent reaction has been detected in the upper mesospheric dark polar regions by OSIRIS on the Odin spacecraft. Averaged observed NO2 emission spectral shapes are obtained by spectrally resolving the NO + O continuum from the blended strong upper mesospheric OH vibration–rotation airglow bands. The observed continuum spectral shape when compared with laboratory measurements is shifted to lower wavelengths by approximately 20 nm in the steeply sloped 400 to 500 nm region. The observed laboratory continuum spectral shape for upper mesospheric ambient pressure is presented for reference over the 400 to 800 nm region. An example of an NO2 continuum volume emission-rate altitude profile derived from a single OSIRIS limb scan is also included. Limb radiances up to 3 × 109 photons cm–2 nm–1 s–1 are observed at the peak of the NO2 continuum corresponding to total volume emission rates of approximately 2 × 104 photons cm–3 s–1. Data extracted from numerous single-volume emission-rate altitude profiles obtained over approximately a 24 h period are assembled into a Southern Hemisphere polar map of the 90 km NO2 continuum emission. The map illustrates the considerable spatial brightness variation typically observed in the dark Antarctic polar region throughout the OSIRIS mission dataset. After further analysis these measurements will assist in quantifying the role of thermospheric formed NOx in the catalytic removal of ozone in the upper stratosphere.

Résumé

L’appareil OSIRIS à bord du satellite Odin a détecté le spectre continu dans le visible et l’infrarouge proche produit par la réaction chimioluminescente NO + O → NO2 + hv dans la mésosphère supérieure des régions polaires sombres. Les moyennes journalières du spectre d’émission de NO2sont obtenues par résolution spectrale du continu NO + O à partir du mélange des fortes bandes de rotation-vibration du OH dans la lueur de haute atmosphère de la mésosphère supérieure. La forme spectrale du continu est alors comparée à des mesures en laboratoire et nous observons un déplacement d’environ 20 nm dans la région de forte pente entre 400 et 800 nm. Nous présentons la forme spectral du continu observé en laboratoire comme référence pour le domaine de 400 à 800 nm. Nous incluons également un exemple du profile en altitude du taux d’émission en volume du continuum de NO2 obtenu d’un simple balayage en élévation par OSIRIS. Nous observons des radiances de limbe jusqu’à 3 × 109 photons cm–2 nm–1 s–1 au maximum du continuum du NO2, correspondant à des taux d’émission totale en volume de 2 × 104 photons cm–3 s–1. Les données obtenues d’un grand nombre de balayages simples sur une période de 24 h sont rassemblées dans une carte du taux d’émission en volume du continuum de NO2 dans la région du pôle sud à 90 km d’altitude. La carte illustre les variations spatiales considérables de brillance typiquement observées dans la partie sombre du pôle sud, sur toute la banque de données de OSIRIS. Après une analyse plus poussée, ces mesures nous aiderons à quantifier le rôle du NOx dans l’appauvrissement de l’ozone de haute atmosphère.

Get full access to this article

View all available purchase options and get full access to this article.

References

1
.
B. Funke, M. López-Puertas, S. Gil-López, T. von Clarmann, G.P. Stiller, H. Fischer, and S. Kellmann. J. Geophys. Res. 110, D24, D24308 (2005).
2
.
S.M. Bailey, C.A. Barth, and S.C. Solomon. J. Geophys. Res. 107, A8, 1205 (2002).
3
.
C.E. Randall, V.I. Harvey, C.S. Singleton, P.F. Bernath, C.D. Boone, and J.U. Kozyra. Geophys. Res. Lett. 33, L18811 (2006).
4
.
P.F. Bernath, C.T. McElroy, M.C. Abrams et al. Geophys. Res. Lett. 32, L15S01 (2005).
5
.
I.C. McDade, E.J. Llewellyn, R.G.H. Greer, and D.P. Murtagh. Planet. Space Sci. 34, 801 (1986).
6
.
C.H. von Savigny, I.C. McDade, G.G. Shepherd, and Y. Rochon. Ann. Geophys. 17, 1439 (1999).
7
.
W.F.J. Evans and G.G. Shepherd. Geophys. Res. Lett. 23, 3623 (1996).
8
.
W.E. Sharp. J. Geophys. Res. 83, A9, 4373 (1978).
9
.
G. Witt, J. Rose, and E.J. Llewellyn. J. Geophys. Res. 86, A2, 623 (1981).
10
.
E.J. Llewellyn, N.D. Lloyd, D.A. Degenstein et al. Can. J. Phys. 82, 411 (2004).
11
.
D.P. Murtagh, U. Frisk, F. Merino et al. Can. J. Phys. 80, 309 (2002).
12
.
K.H. Becker, W. Groth, and D. Thran. Chem. Phys. Lett. 15, 215 (1972).
13
.
R.L. Gattinger, D.A. Degenstein, and E.J. Llewellyn. J. Geophys. Res. 111, D13, D13303 (2006).
14
.
I.C. McDade and E.J. Llewellyn. Ann. Geophys. 11, 47 (1993).
15
.
R.E. Murphy. J. Chem. Phys. 54, 4852 (1971).
16
.
D.N. Turnbull and R.P. Lowe. Planet. Space Sci. 37, 723 (1989).
17
.
A.L. Broadfoot and K.R. Kendall. J. Geophys. Res. 73, 426 (1968).
18
.
D.A. Whytock, J.V. Michael, and W.A. Payne. Chem. Phys. Lett. 42, 466 (1976).
19
.
J.D. Lumpe, S. Bailey, B. McClintock, and C. Randall. Observing nitric oxide in the polar night by stellar occultation, Eos Trans. AGU, Fall Meeting Suppl., Abstract #SA23A–1128. 2007.

Information & Authors

Information

Published In

cover image Canadian Journal of Physics
Canadian Journal of Physics
Volume 87Number 8August 2009
Pages: 925 - 932

History

Received: 12 February 2009
Accepted: 4 May 2009
Version of record online: 26 September 2009

Permissions

Request permissions for this article.

Key Words

  1. 33.20.–t
  2. 34.90.+q
  3. 92.60.H–
  4. 92.60.hc
  5. 92.60.hw

Authors

Affiliations

R. L. Gattinger
ISAS, Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
W. F.J. Evans
Centre for Research in Earth and Space Sciences (CRESS), York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
I.C. McDade
Centre for Research in Earth and Space Sciences (CRESS) and Department of Earth and Space Science and Engineering (ESSE); York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
D. A. Degenstein
ISAS, Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
ISAS, Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Structure, variability, and origin of the low-latitude nightglow continuum between 300 and 1800 nm: evidence for HO 2 emission in the near-infrared
2. Morphological Characteristics of Strong Thermal Emission Velocity Enhancement Emissions
3. Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery
4. Impact of atmospheric pressure nonequilibrium plasma discharge on polymer surface metrology
5. Operational Envelope of the Low Power Plasma Facilities at the University of Kentucky
6. Validation of OSIRIS mesospheric temperatures using satellite and ground-based measurements
7. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements
8. The observation of chemiluminescent NiO<sup>*</sup> emissions in the laboratory and in the night airglow
9. A spectral model of the FeO orange bands with a comparison between a laboratory spectrum and a night airglow spectrum observed by OSIRIS on Odin
10. The observation of chemiluminescent NiO* emissions in the laboratory and in the night airglow
11. Quantitative spectroscopy of the aurora. VI. The auroral spectrum from 275 to 815 nm observed by the OSIRIS spectrograph on board the Odin spacecraft
12. Observation of the 557.7 nm to 297.2 nm brightness ratio in the auroral spectrum with OSIRIS on Odin

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physics

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media