Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Abstract

Antihydrogen spectroscopy promises precise tests of the symmetry of matter and antimatter, and can possibly offer new insights into the baryon asymmetry of the universe. Antihydrogen is, however, difficult to synthesize and is produced only in small quantities. The ALPHA collaboration is therefore pursuing a path towards trapping cold antihydrogen to permit the use of precision atomic physics tools to carry out comparisons of antihydrogen and hydrogen. ALPHA has addressed these challenges. Control of the plasma sizes has helped to lower the influence of the multipole field used in the neutral atom trap, and thus lowered the temperature of the created atoms. Finally, the first systematic attempt to identify trapped antihydrogen in our system is discussed. This discussion includes special techniques for fast release of the trapped anti-atoms, as well as a silicon vertex detector to identify antiproton annihilations. The silicon detector reduces the background of annihilations, including background from antiprotons that can be mirror trapped in the fields of the neutral atom trap. A description of how to differentiate between these events and those resulting from trapped antihydrogen atoms is also included.

Résumé

La spectroscopie de l’anti-hydrogène promet des tests précieux de la symétrie entre matière et antimatière dans l’univers. Cependant, l’anti-hydrogène est difficile à synthétiser et il n’est produit qu’en petite quantité. Le groupe de collaborateurs ALPHA poursuit donc des travaux pour capturer de l’anti-hydrogène froid afin de permettre l’utilisation d’outils précis de mesure en physique atomique pour comparer l’anti-hydrogène avec l’hydrogène. Nous montrons comment ALPHA s’est attaqué à cette tâche et comment le contrôle du volume de plasma a aidé à diminuer l’influence des champs multipolaires utilisés dans le piège pour atomes neutres et ainsi abaisser la température des atomes produits. Finalement, nous discutons le premier essai systématique pour identifier l’anti-hydrogène piégé dans notre système. Ceci inclut des techniques spéciales pour relâcher rapidement les anti-atomes piégés, ainsi qu’un détecteur au silicium pour identifier l’annihilation de l’anti-proton. Nous avons utilisé le détecteur au silicium pour réduire le fond d’annihilation, incluant celui produit par les anti-protons qui peuvent être dans le piège miroir des champs du piège à atomes neutres. Nous décrivons aussi comment nous pouvons différentier entre ces événements et ceux qui résultent des atomes d’anti-hydrogène piégés.

Get full access to this article

View all available purchase options and get full access to this article.

References

1
.
G.M. Shore. Nucl. Phys, B717, 86 (2005).
2
.
M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, C. Carraro, C.L. Cesar, M. Charlton, M.J. Collier, M. Doser, V. Filippini, K.S. Fine, A. Fontana, M.C. Fujiwara, R. Funakoshi, P. Genova, J.S. Hangst, R.S. Hayano, M.H. Holzscheiter, L.V. Jørgensen, V. Lagomarsino, R. Landua, D. Lindelöf, E. Lodi Rizzini, M. Macrì, N. Madsen, G. Manuzio, M. Marchesotti, P. Montagna, H. Pruys, C. Regenfus, P. Riedler, J. Rochet, A. Rotondi, G. Rouleau, G. Testera, A. Variola, T.L. Watson, and D.P. van der Werf; ATHENA Collaboration. Nature, 419, 456 (2002).
3
.
G. Gabrielse, N.S. Bowden, P. Oxley, A. Speck, C.H. Storry, J.N. Tan, M. Wessels, D. Grzonka, W. Oelert, G. Schepers, T. Sefzick, J. Walz, H. Pittner, T.W. Hänsch, and E.A. Hessels; ATRAP Collaboration. Phys. Rev. Lett. 89, 213401 (2002).
4
.
W. Bertsche, A. Boston, P. Bowe, C. Cesar, S. Chapman, M. Charlton, M. Chartier, A. Deutsch, J. Fajans, and M. Fujiwara; ALPHA Collaboration. Nucl. Inst. Meth. A, 566, 746 (2006).
5
.
N. Madsen, M. Amoretti, C. Amsler, G. Bonomi, P.D. Bowe, C. Carraro, C.L. Cesar, M. Charlton, M. Doser, A. Fontana, M.C. Fujiwara, R. Funakoshi, P. Genova, J.S. Hangst, R.S. Hayano, L.V. Jørgensen, A. Kellerbauer, V. Lagomarsino, R. Landua, E. Lodi-Rizzini, M. Macri, D. Mitchard, P. Montagna, H. Pruys, C. Regenfus, A. Rotondi, G. Testera, A. Variola, L. Venturelli, D.P. van der Werf, Y. Yamazaki, and N. Zurlo; ATHENA Collaboration. Phys. Rev. Lett. 94, 033403 (2005).
6
.
G. Gabrielse, A. Speck, C.H. Storry, D. LeSage, N. Guise, D. Grzonka, W. Oelert, G. Schepers, T. Sefzick, H. Pittner, J. Walz, T.W. Hänsch, D. Comeau, and E.A. Hessels; ATRAP Collaboration. Phys. Rev. Lett. 93, 073401 (2004).
7
.
J. Fajans, W. Bertsche, K. Burke, S.F. Chapman, and D.P. van der Werf. Phys. Rev. Lett. 95, 155001 (2005).
8
.
M. Amoretti, et al.;ATHENA Collaboration. Phys. Lett. 578B, 23 (2004).
9
.
G.B. Andresen, W. Bertsche, P.D. Bowe, C. Bray, E. Butler, C.L. Cesar, S. Chapman, M. Charlton, J. Fajans, and M.C. Fujiwara; ALPHA Collaboration. Phys. Lett. 685B, 141 (2010).
10
.
T.J. Murphy and C.M. Surko. Phys. Rev. A, 46, 5696 (1992).
11
.
S. Maury. Hyperfine Interact. 109, 43 (1997).
12
.
G.B. Andresen, W. Bertsche, P.D. Bowe, C.C. Bray, E. Butler, C.L. Cesar, S. Chapman, M. Charlton, J. Fajans, M.C. Fujiwara, D.R. Gill, J.S. Hangst, W.N. Hardy, R.S. Hayano, M.E. Hayden, A.J. Humphries, R. Hydomako, L.V. Jørgensen, S.J. Kerrigan, L. Kurchaninov, R. Lambo, N. Madsen, P. Nolan, K. Olchanski, A. Olin, A.P. Povilus, P. Pusa, E. Sarid, S. Seif El Nasr, D.M. Silveira, J.W. Storey, R.I. Thompson, D.P. van der Werf, and Y. Yamazaki; ALPHA Collaboration. Rev. Sci. Instrum. 80, 123701 (2009) .
13
.
G.B. Andresen, W. Bertsche, P.D. Bowe, C.C. Bray, E. Butler, C.L. Cesar, S. Chapman, M. Charlton, J. Fajans, M.C. Fujiwara, R. Funakoshi, D.R. Gill, J.S. Hangst, W.N. Hardy, R.S. Hayano, M.E. Hayden, R. Hydomako, M.J. Jenkins, L.V. Jørgensen, L. Kurchaninov, R. Lambo, N. Madsen, P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid, S.S. El Nasr, D.M. Silveira, J.W. Storey, R.I. Thompson, D.P. van der Werf, J.S. Wurtele, and Y. Yamazaki; ALPHA Collaboration. Phys. Rev. Lett. 100, 203401 (2008).
14
.
F. Robicheaux. Phys. Rev. A, 70, 022510 (2004).
15
.
J. Fajans, N. Madsen, and F. Robicheaux. Phys. Plasmas, 15, 032108 (2008).
16
.
D.L. Eggleston, C.F. Driscoll, B.R. Beck, A.W. Hyatt, and J.H. Malmberg. Phys. Fluids B, 4, 3432 (1992).
17
.
G.B. Andresen, M.D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P.D. Bowe, E. Butler, C.L. Cesar, S. Chapman, M. Charlton, J. Fajans, T. Friesen, M.C. Fujiwara, D.R. Gill, J.S. Hangst, W.N. Hardy, R.S. Hayano, M.E. Hayden, A. Humphries, R. Hydomako, S. Jonsell, L. Kurchaninov, R. Lambo, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid, D.M. Silveira, C. So, J.W. Storey, R.I. Thompson, D.P. van der Werf, D. Wilding, J.S. Wurtele, and Y. Yamazaki; ALPHA Collaboration. Phys. Rev. Lett. 105, 013003 (2010).
18
.
M.C. Fujiwara. AIP Conf. Proc. 793, 111 (2005).
19
.
G.B. Andresen, M.D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P.D. Bowe, C.C. Bray, E. Butler, C.L. Cesar, S. Chapman, and M. Charlton; ALPHA Collaboration. Physics Letters B. In press. (2010).

Information & Authors

Information

Published In

cover image Canadian Journal of Physics
Canadian Journal of Physics
Volume 89Number 1January 2011
Pages: 7 - 16

History

Received: 18 July 2010
Accepted: 30 August 2010
Version of record online: 21 December 2010

Notes

This paper was presented at the International Conference on Precision Physics of Simple Atomic Systems, held at École de Physique, les Houches, France, 30 May – 4 June, 2010.

Permissions

Request permissions for this article.

Key Words

  1. 25.43.+t
  2. 34.80.Lx
  3. 36.10.–k
  4. 37.10.Gh

Authors

Affiliations

Department of Physics, Swansea University, Swansea SA2 8PP, UK.
G. B. Andresen
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
M. D. Ashkezari
Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
M. Baquero-Ruiz
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
W. Bertsche
Department of Physics, Swansea University, Swansea SA2 8PP, UK.
P. D. Bowe
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
C. Bray
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
E. Butler
Department of Physics, Swansea University, Swansea SA2 8PP, UK.
C. L. Cesar
Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil.
S. Chapman
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
M. Charlton
Department of Physics, Swansea University, Swansea SA2 8PP, UK.
J. Fajans
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
T. Friesen
Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4, Canada.
M. C. Fujiwara
TRIUMF, 4004 Wesbrook Mall Vancouver, BC V6T 2A3, Canada.
D. R. Gill
TRIUMF, 4004 Wesbrook Mall Vancouver, BC V6T 2A3, Canada.
J. S. Hangst
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
W. N. Hardy
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
M. E. Hayden
Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
A. J. Humphries
Department of Physics, Swansea University, Swansea SA2 8PP, UK.
R. Hydomako
Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4, Canada.
S. Jonsell
Department of Physics, Swansea University, Swansea SA2 8PP, UK.
L. V. Jørgensen
Department of Physics, Swansea University, Swansea SA2 8PP, UK.
L. Kurchaninov
TRIUMF, 4004 Wesbrook Mall Vancouver, BC V6T 2A3, Canada.
R. Lambo
Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil.
S. Menary
Department of Physics, York University, Toronto, ON M3J 1P3, Canada.
P. Nolan
Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK.
K. Olchanski
TRIUMF, 4004 Wesbrook Mall Vancouver, BC V6T 2A3, Canada.
A. Olin
TRIUMF, 4004 Wesbrook Mall Vancouver, BC V6T 2A3, Canada.
A. Povilus
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
P. Pusa
Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK.
F. Robicheaux
Department of Physics, Auburn University, Auburn, AL 36849-5311, USA.
E. Sarid
Department of Physics, NRCN-Nuclear Research Center Negev, Beer Sheva, IL-84190, Israel.
S. Seif El Nasr
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
D. M. Silveira
Atomic Physics Laboratory, RIKEN, Saitama 351-0198, Japan.
C. So
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
J. W. Storey
TRIUMF, 4004 Wesbrook Mall Vancouver, BC V6T 2A3, Canada.
R. I. Thompson
Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4, Canada.
D. P. van der Werf
Department of Physics, Swansea University, Swansea SA2 8PP, UK.
J. S. Wurtele
Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
Y. Yamazaki
Atomic Physics Laboratory, RIKEN, Saitama 351-0198, Japan.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physics

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media