Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

A spectral model of the FeO orange bands with a comparison between a laboratory spectrum and a night airglow spectrum observed by OSIRIS on Odin

Publication: Canadian Journal of Physics
5 February 2011

Abstract

Emissions from the FeO orange bands have been observed in the laboratory for many decades. The transition has been identified as D(5Δi)–X(5Δi) where the subscript identifies the five Ω spin components. While the ground-state molecular constants are well-known, information on the upper state is less precise, and this is primarily due to significant energy level perturbations. Using the available constants, a preliminary spectral simulation model of the orange bands has been developed with a wavelength accuracy of approximately 1/3 nm. Using data from the OSIRIS spectrograph on board the Odin spacecraft, these FeO orange bands have been identified as a component of the night airglow spectrum emanating from the upper mesosphere. The spectral simulation model is combined with the OSIRIS observations to determine the vibrational development of the FeO emissions in the airglow. The model is also applied to published laboratory observations of the orange bands, conducted at much higher pressure than for the airglow, to test for different vibrational development.

Résumé

Pendant des décennies, nous avons observé en laboratoire les bandes dans l’orange du FeO. La transition a été identifiée comme étant D(5Δi)–X(5Δi), où l’indice inférieur identifie la composante Ω du spin. Alors que les constantes moléculaires du fondamental sont bien connues, celles de l’état supérieur le sont moins, largement à cause des perturbations entre les niveaux. Utilisant les constantes disponibles, nous avons développé un modèle préliminaire simulant ces bandes avec une précision sur la longueur d’onde de 1/3 nm. À l’aide des données du spectrographe OSIRIS à bord du satellite Odin, nous avons identifié ces bandes dans l’orange comme une composante de la lueur atmosphérique nocturne émanant de la mésosphère supérieure. Le modèle de simulation spectrale est combiné avec les observations d’OSIRIS pour obtenir le développement vibrationnel des émissions de FeO dans la lueur. Nous utilisons aussi le modèle en conjonction avec des mesures publiées, obtenues en laboratoire à une pression beaucoup plus élevée que dans la mésosphère, afin de vérifier différents développements vibrationnels.

Get full access to this article

View all available purchase options and get full access to this article.

References

1
.
A.J. Ångström. Pogg. Ann. 213, 161 (1869).
2
.
J.C. McLennan and G.M. Shrum. Proc. R. Soc. Lond. A, 108, 501 (1925).
3
.
D. Barbier, J. Dufay, and D. Williams. Ann. Astrophys. (Paris), 14, 399 (1951).
4
.
J.R. Sternberg and M.F. Ingham. Mon. Not. R. Astron. Soc. 159, 1 (1972).
5
.
W.E. Sharp. J. Geophys. Res. 83, A9, 4373 (1978).
6
.
G. Witt, J. Stegman, B.H. Solheim, and E.J. Llewellyn. Planet. Space Sci. 27, 341 (1979).
7
.
G. Witt, J. Rose, and E.J. Llewellyn. J. Geophys. Res. 86, A2, 623 (1981).
8
.
I.C. McDade, E.J. Llewellyn, R.G.H. Greer, and D.P. Murtagh. Planet. Space Sci. 34, 801 (1986).
9
.
R.L. Gattinger, I.C. McDade, A.L. Alfaro Suzán, C.D. Boone, K.A. Walker, P.F. Bernath, W.F.J. Evans, D.A. Degenstein, J.-H. Yee, P. Sheese, and E.J. Llewellyn. J. Geophys. Res. 115, D12, D12301 (2010).
10
.
P.C. Cosby and T.G. Slanger. Can. J. Phys. 85, 77 (2007).
11
.
R.L. Gattinger, W.F.J. Evans, I.C. McDade, D.A. Degenstein, and E.J. Llewellyn. Can. J. Phys. 87, 925 (2009).
12
.
W.F.J. Evans, R.L. Gattinger, T.G. Slanger, D.V. Saran, D.A. Degenstein, and E.J. Llewellyn. Geophys. Res. Lett. 37, L22105 (2010).
13
.
P. Jenniskens, M. Lacey, B.J. Allan, D.E. Self, and J.M.C. Plane. Earth Moon Planets, 82–83, 429 (2000).
14
.
T.J. Kane and C.S. Gardner. J. Geophys. Res. 98, D9, 16875 (1993).
15
.
J.M.C. Plane. Atmos. Chem. Phys. 4, 627 (2004).
16
.
C.S. Gardner, J.M.C. Plane, W. Pan, T. Vondrak, B.J. Murray, and X. Chu. J. Geophys. Res. 110, D10, D10302 (2005).
17
.
E.J. Llewellyn, N.D. Lloyd, D.A. Degenstein, R.L. Gattinger, S.V. Petelina, A.E. Bourassa, J.T. Wiensz, E.V. Ivanov, I.C. McDade et al. Can. J. Phys. 82, 411 (2004).
18
.
D.P. Murtagh, U. Frisk, F. Merino, M. Ridal, A. Jonsson, J. Stegman, G. Witt, P. Eriksson, C. Jiménez et al. Can. J. Phys. 80, 309 (2002).
19
.
A.E. Bourassa, D.A. Degenstein, and E.J. Llewellyn. J. Quant. Spectrosc. Radiat. Transf. 109, 52 (2008).
20
.
K.H. Becker, W. Groth, and D. Thran. Chem. Phys. Lett. 15, 215 (1972).
21
.
S.R. Langhoff, H.-J. Werner, and P. Rosmus. J. Mol. Spectrosc. 118, 507 (1986).
22
.
T.G. Slanger, P.C. Cosby, D.L. Huestis, and D.E. Osterbrock. J. Geophys. Res. 105, D16, 20557 (2000).
23
.
P.C. Cosby, B.D. Sharpee, T.G. Slanger, D.L. Huestis, and R.W. Hanuschik. J. Geophys. Res. 111, A12, A12307 (2006).
24
.
A.S.-C. Cheung, A.M. Lyyra, A.J. Merer, and A.W. Taylor. J. Mol. Spectrosc. 102, 224 (1983).
25
.
A.S.-C. Cheung, N. Lee, A.M. Lyyra, A.J. Merer, and A.W. Taylor. J. Mol. Spectrosc. 95, 213 (1982).
26
.
A.W. Taylor, A.S.-C. Cheung, and A.J. Merer. J. Mol. Spectrosc. 113, 487 (1985).
27
.
M. Barnes, M.M. Fraser, P.G. Hajigeorgiou, A.J. Merer, and S.D. Rosner. J. Mol. Spectrosc. 170, 449 (1995).
28
.
H.S. Son, K. Lee, S.K. Shin, and J.K. Ku. Chem. Phys. Lett. 320, 658 (2000).
29
.
J. Lei and P.J. Dagdigian. J. Mol. Spectrosc. 203, 345 (2000).
30
.
G. Herzberg. In Molecular spectra and molecular structure I. Spectra of diatomic molecules. D. Van Nostrand Company, Inc., NewYork.
31
.
M. Helmer and J.M.C. Plane. J. Chem. Soc., Faraday Trans. 90, 31 (1994).
32
.
I.C. McDade and E.J. Llewellyn. J. Geophys. Res. 92, A7, 7643 (1987).
33
.
S. Adler-Golden. J. Geophys. Res. 102, A9, 19969 (1997).
34
.
I.W.M. Smith. J. Chem. Soc., Faraday Trans. 93, 3741 (1997).
35
.
B. Xue, J. Han, and H.-L. Dai. Phys. Rev. Lett. 84, 2606 (2000).

Information & Authors

Information

Published In

cover image Canadian Journal of Physics
Canadian Journal of Physics
Volume 89Number 2February 2011
Pages: 239 - 248

History

Received: 17 October 2010
Accepted: 4 January 2011
Version of record online: 5 February 2011

Permissions

Request permissions for this article.

Key Words

  1. 33.20.Kf
  2. 34.50.Ez
  3. 92.60.H-
  4. 92.60.hb
  5. 92.60.hc
  6. 92.60.hw
  7. 95.30.Ft
  8. 95.30.Fg
  9. 95.30.Kr

Authors

Affiliations

ISAS, Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
W. F.J. Evans
NorthWest Research Associates, Inc, 4118 148 Ave. NE, Redmond, WA, 98052, USA.
Centre for Research in Earth and Space Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
D. A. Degenstein
ISAS, Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
E. J. Llewellyn
ISAS, Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. The Influence of an External Uniform Magnetic Field on the Process of Synthesis of Fe2O3 Nanoparticles in the Plasma of an Impulse Underwater Discharge
2. Structure, variability, and origin of the low-latitude nightglow continuum between 300 and 1800 nm: evidence for HO 2 emission in the near-infrared
3. Measuring FeO variation using astronomical spectroscopic observations
4. The Mesosphere and Metals: Chemistry and Changes
5. Chemiluminescent NiO* emissions: band systems and spectral simulation
6. The observation of chemiluminescent NiO<sup>*</sup> emissions in the laboratory and in the night airglow
7. FeO emission in the mesosphere: Detectability, diurnal behavior, and modeling
8. The observation of chemiluminescent NiO* emissions in the laboratory and in the night airglow

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physics

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media