Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise

Publication: Applied Physiology, Nutrition, and Metabolism
8 February 2013


This study examined the acute effect of sprint interval exercise (SIE) on postexercise oxygen consumption, substrate oxidation, and blood pressure. The participants were 10 healthy males aged 21–27 years. Following overnight fasts, each participant undertook 2 trials in a random balanced order: (i) four 30-s bouts of SIE on a cycle ergometer, separated by 4.5 min of recovery, and (ii) resting (control) in the laboratory for an equivalent period. Time-matched measurements of oxygen consumption, respiratory exchange ratio, and blood pressure were made for 2 h into recovery. Total 2-h oxygen consumption was significantly higher in the SIE than in the control trial (mean ± SD: Control: 31.9 ± 6.7 L vs Exercise: 45.5 ± 6.8 L, p < 0.001). The rate of fat oxidation was 75% higher 2 h after the exercise trial compared with the control trial (Control: 0.08 ± 0.05 g·min−1 vs Exercise: 0.14 ± 0.06 g·min−1, p = 0.035). Systolic blood pressure (Control: 117 ± 8 mm Hg vs Exercise: 109 ± 8 mm Hg, p < 0.05) and diastolic blood pressure (Control: 84 ± 6 mm Hg vs Exercise: 77 ± 5 mm Hg, p < 0.05) were significantly lower 2 h after the exercise trial compared with the control trial. These data showed a 42% increase in oxygen consumption (∼13.6 L) over 2 h after a single bout of SIE. Moreover, the rate of fat oxidation increased by 75%, whereas blood pressure was reduced by ∼8 mm Hg 2 h after SIE. Whether these acute benefits of SIE can translate into long-term changes in body composition and an improvement in vascular health needs investigation.


Cette étude analyse l'effet immédiat de sprints effectués par intervalle (« SIE ») sur la consommation d'oxygène, l'oxydation des substrats et la pression sanguine au cours de la période de récupération. Dix hommes âgés de 21 à 27 ans et en bonne santé participent à cette étude. Après un jeûne d'une nuit, les sujets participent à deux essais selon un ordre aléatoire contrebalancé :(i) 4 exercices de SIE sur cycloergomètre d'une durée de 30 s intercalés de 4,5 min de repos ou (ii) repos (contrôle) d'une même durée dans un laboratoire. Pendant 2 h au cours de la récupération, on évalue au même moment pour les deux essais la consommation d'oxygène, le ratio d'échanges gazeux et la pression sanguine. La consommation totale d'oxygène mesurée durant 2 h au cours de la récupération est significativement supérieure dans la condition SIE que dans la condition de contrôle : moyenne ± écart type, (contrôle) 31,9 ± 6,7 L vs (SIE) 45,5 ± 6,8 L (p < 0,001). Au cours des 2 h suivant la fin de l'exercice, le taux d'oxydation des graisses est de 75% supérieur à la condition de contrôle : 0,14 ± 0,06 g·min−1 vs 0,08 ± 0,05 g·min−1, respectivement (p = 0,035). Au cours de cette même période les pressions systolique (contrôle: 117 ± 8 mm Hg vs SIE: 109 ± 8 mm Hg, p < 0,05) et diastolique (contrôle: 84 ± 6 mm Hg vs SIE: 77 ± 5 mm Hg, p < 0,05) sont significativement inférieures. Ces observations révèlent une augmentation de 42 % de la consommation d'oxygène (∼13,6 L) durant 2 h à la suite d'une seule séance de SIE. En outre, le taux d'oxydation des gras augmente de 75 % pendant que la pression sanguine diminue de ∼8 mm Hg deux heures après SIE. Il reste à démontrer que les bienfaits immédiats de SIE ont des répercussions à long terme sur la modification de la composition corporelle et l'amélioration de la santé vasculaire.

Get full access to this article

View all available purchase options and get full access to this article.


Babraj J.A., Vollaard N.B., Keast C., Guppy F.M., Cottrell G., and Timmons J.A. 2009. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr. Disord. 9: 3.
Bahr R., Grønnerød O., and Sejersted O.M. 1992. Effect of supramaximal exercise on excess postexercise O2 consumption. Med. Sci. Sports Exerc. 24(1): 66–71.
Burgomaster K.A., Hughes S.C., Heigenhauser G.J., Bradwell S.N., and Gibala M.J. 2005. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 98(6): 1985–1990.
Burgomaster K.A., Howarth K.R., Phillips S.M., Rakobowchuk M., Macdonald M.J., McGee S.L., and Gibala M.J. 2008. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 586(1): 151–160.
Epidemiology and Disease Control Division, Ministry of Health, Singapore. 2010. National Health Survey 2010. ISBN 978–981-08-8540-3.
Freese E.C., Levine A.S., Chapman D.P., Hausman D.B., and Cureton K.J. 2011. Effects of acute sprint interval cycling and energy replacement on postprandial lipemia. J. Appl. Physiol. 111(6): 1584–1589.
Kuo C.C., Fattor J.A., Henderson G.C., and Brooks G.A. 2005. Lipid oxidation in fit young adults during postexercise recovery. J. Appl. Physiol. 99(1): 349–356.
Laforgia J., Withers R.T., Shipp N.J., and Gore C.J. 1997. Comparison of energy expenditure elevations after submaximal and supramaximal running. J. Appl. Physiol. 82(2): 661–666.
Macpherson R.E.K., Hazell T.J., Olver T.D., Paterson D.H., and Lemon P.W.R. 2011. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med. Sci. Sports Exerc. 43(1): 115–122.
Matthews J.N., Altman D.G., Campbell M.J., and Royston P. 1990. Analysis of serial measurements in medical research. BMJ, 300(6719): 230–235.
Melanson E.L, MacLean P.S., and Hill J.O. 2009a. Exercise improves fat metabolism in muscle but does not increase 24-h fat oxidation. Exerc. Sport Sci Rev. 37(2): 93–101.
Melanson E.L., Gozansky W.S., Barry D.W., Maclean P.S., Grunwald G.K., and Hill J.O. 2009b. When energy balance is maintained, exercise does not induce negative fat balance in lean sedentary, obese sedentary, or lean endurance-trained individuals. J. Appl. Physiol. 107(6): 1847–1856.
Millar-Craig M.W., Bishop C.N., and Raftery E.B. 1978. Circadian variation of blood-pressure. Lancet, 1(8068): 795–797.
Miyashita M., Burns S.F., and Stensel D.J. 2008. Accumulating short bouts of brisk walking reduces postprandial plasma triacylglycerol concentrations and resting blood pressure in healthy young men. Am. J. Clin. Nutr. 88(5): 1225–1231.
Piepoli M., Coats A.J., Adamopoulos S., Bernardi L., Feng Y.H., Conway J., and Sleight P. 1993. Persistent peripheral vasodilation and sympathetic activity in hypotension after maximal exercise. J. Appl. Physiol. 75(4): 1807–1814.
Rakobowchuk M., Stuckey M.I., Millar P.J., Gurr L., and Macdonald M.J. 2009. Effect of acute sprint interval exercise on central and peripheral artery distensibility in young healthy males. Eur. J. Appl. Physiol. 105(5): 787–795.
Richards J.C., Johnson T.K., Kuzma J.N., Lonac M.C., Schweder M.M., Voyles W.F., and Bell C. 2010. Short-term sprint interval training increases insulin sensitivity in healthy adults but does not affect the thermogenic response to beta-adrenergic stimulation. J. Physiol. 588(15): 2961–2972.
Rossow L., Yan H., Fahs C.A., Ranadive S.M., Agiovlasitis S., Wilund K.R., et al. 2010. Postexercise hypotension in an endurance-trained population of men and women following high-intensity interval and steady-state cycling. Am. J. Hypertens. 23(4): 358–367.
Stuckey M.I., Tordi N., Mourot L., Gurr L.J., Rakobowchuk M., Millar P.J., et al. 2011. Autonomic recovery following sprint interval exercise. Scand. J. Med. Sci. Sports.
Talanian J.L., Galloway S.D., Heigenhauser G.J., Bonen A., and Spriet L.L. 2007. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J. Appl. Physiol. 102(4): 1439–1447.
Whyte L.J., Gill J.M., and Cathcart A.J. 2010. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism, 59(10): 1421–1428.

Information & Authors


Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 38Number 2February 2013
Pages: 182 - 187


Received: 13 April 2012
Accepted: 29 August 2012
Published online: 8 February 2013


Request permissions for this article.

Key Words

  1. sprint exercise
  2. metabolism
  3. blood pressure
  4. fat oxidation


  1. exercice de sprint
  2. métabolisme
  3. pression sanguine
  4. oxydation des gras



Huan Hao Chan
Sport Science and Management, Nanyang Technological University, Singapore 637616.
Stephen Francis Burns
Sport Science and Management, Nanyang Technological University, Singapore 637616.
Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore 637616.

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Optimizing sprint interval exercise for post-exercise hypotension: A randomized crossover trial
2. Comparing Post-Exercise Hypotension after Different Sprint Interval Training Protocols in a Matched Sample of Younger and Older Adults
3. Characterizing the interindividual postexercise hypotension response for two order groups of concurrent training in patients with morbid obesity
4. Sex Differences in Recovery From Sprint Interval Exercise
5. Similar Postexercise Hypotension Following MICT, HIIT, and SIT Exercise in Middle-aged Adults
6. Volunteer Bias and Female Participation in Exercise and Sports Science Research
7. A short bout of high-intensity intermittent exercise before moderate-intensity prolonged exercise as a mean to potentiate fat oxidation ?
8. The effects of a pre-exercise meal on postexercise metabolism following a session of sprint interval training
10. Acute sprint exercise transcriptome in human skeletal muscle
11. Excess postexercise oxygen consumption and fat oxidation in recreationally trained men following exercise of equal energy expenditure: comparisons of spinning and constant endurance exercise
12. Excess Postexercise Oxygen Consumption and Fat Utilization Following Submaximal Continuous and Supramaximal Interval Running
13. Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT)
14. Translation of exhaled breath volatile analyses to sport and exercise applications
15. Effects of short-lasting supramaximal-intensity exercise on diet-induced increase in oxygen uptake
16. The Effect of Sprint Training for Reducing Body Fat in Women
17. Modified sprint interval training protocols. Part I. Physiological responses1
18. Similar metabolic response to lower- versus upper-body interval exercise or endurance exercise
19. Total PYY and GLP-1 responses to submaximal continuous and supramaximal sprint interval cycling in men
20. The Effect of Exercise Intensity on Total PYY and GLP-1 in Healthy Females: A Pilot Study
21. Excess Postexercise Oxygen Consumption After High-Intensity and Sprint Interval Exercise, and Continuous Steady-State Exercise
22. The training and detraining effect of high-intensity interval training on post-exercise hypotension in young overweight/obese women
23. Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT)
24. Energy intake over 2 days is unaffected by acute sprint interval exercise despite increased appetite and energy expenditure
25. Mode of exercise and sex are not important for oxygen consumption during and in recovery from sprint interval training
26. Running sprint interval training induces fat loss in women
27. Lipid homeostasis in exercise
28. Changes in mechanisms proposed to mediate fat loss following an acute bout of high-intensity interval and endurance exercise
29. The impact of high-intensity intermittent exercise on resting metabolic rate in healthy males
30. Total daily energy expenditure is increased following a single bout of sprint interval training

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share with email

Email a colleague

Share on social media