Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Long-lasting exercise involvement protects against decline in O2max and O2 kinetics in moderately active women

Publication: Applied Physiology, Nutrition, and Metabolism
8 July 2020


We studied the effects of age on different physiological parameters, including those derived from (i) maximal cardiopulmonary exercise testing (CPET), (ii) moderate-intensity step transitions, and (iii) tensiomyography (TMG)-derived variables in moderately active women. Twenty-eight women (age, 19 to 53 years), completed 3 laboratory visits, including baseline data collection, TMG assessment, maximal oxygen uptake test via CPET, and a step-transition test from 20 W to a moderate-intensity cycling power output (PO), corresponding to oxygen uptake at 90% gas exchange threshold. During the step transitions, breath-by-breath pulmonary oxygen uptake, near infrared spectroscopy derived muscle deoxygenation (ΔHHb), and beat-by-beat cardiovascular response were continuously monitored. There were no differences observed between the young and middle-aged women in their maximal oxygen uptake and peak PO, while the maximal heart rate (HR) was 12 bpm lower in middle-aged compared with young (p = 0.016) women. Also, no differences were observed between the age groups in τ pulmonary oxygen uptake, ΔHHb, and τHR during on-transients. The first regression model showed that age did not attenuate the maximal CPET capacity in the studied population (p = 0.638), while in the second model a faster τ pulmonary oxygen uptake, combined with shorter TMG-derived contraction time (Tc) of the vastus lateralis (VL), were associated with a higher maximal oxygen uptake (∼30% of explained variance, p = 0.039). In conclusion, long lasting exercise involvement protects against a maximal oxygen uptake and τpulmonary oxygen uptake deterioration in moderately active women.
Faster τ pulmonary oxygen uptake and shorter Tc of the VL explain 33% of the variance in superior maximal oxygen uptake attainment.
No differences between age groups were found in τ pulmonary oxygen uptake, τΔHHb, and τHR during on-transients.


Nous examinons les effets de l'âge sur différents paramètres physiologiques, y compris ceux dérivés (i) du test d’effort cardiopulmonaire maximal (« CPET »), (ii) des transitions par paliers d’intensité modérée et (iii) des variables dérivées de la tensiomyographie (« TMG ») chez les femmes modérément actives. Vingt-huit femmes (tranche d’âge de 19 à 53 ans) se présentent trois fois au laboratoire pour la collecte des données de base, l’évaluation TMG, le CPET pour la mesure de la consommation maximale d’oxygène et un test de transition par paliers de 20 W à une puissance de pédalage d’intensité modérée correspondant au consommation d’oxygène au seuil d’échange des gaz de 90 %. À chaque palier, la consommation d’oxygène pulmonaire par respiration, la désoxygénation musculaire dérivée de la spectroscopie proche infrarouge (« ΔHHb ») et la réponse cardiovasculaire battement par battement sont évaluées en continu. Aucune différence de la consommation maximale d’oxygène et de PO de pointe n’est observée entre les femmes jeunes et d’âge moyen tandis que la HR max est de 12 bpm inférieure chez les femmes d’âge moyen comparativement aux femmes jeunes (p = 0,016). De plus, aucune différence de τ consommation d’oxygène pulmonaire par respiration, ΔHHb et τHR n’est observée entre les groupes d’âge pendant les paliers. Le premier modèle de régression montre que l’âge n’atténue pas le résultat au CPET dans l’échantillon étudié (p = 0,638) tandis que dans le deuxième modèle, un τ consommation d’oxygène pulmonaire par respiration plus rapide combiné à un temps de contraction (« Tc ») plus court dérivé du TMG du vastus lateralis (« VL ») sont associés à une consommation maximale d’oxygène plus élevé (∼ 30 % de la variance expliquée, p = 0,039). En conclusion, la participation à un exercice de longue durée protège contre une détérioration de la consommation maximale d’oxygène et du τ consommation d’oxygène pulmonaire par respiration chez les femmes modérément actives. [Traduit par la Rédaction]
Les nouveautés :
Une τ la consommation d’oxygène pulmonaire par respiration plus rapide et un Tc plus court du VL expliquent 33 % de la variance dans l’obtention d’une valeur supérieure de la consommation maximale d’oxygène.
Aucune différence de τ consommation d’oxygène pulmonaire, τΔHHb, τHR entre les groupes d’âge n'est observée durant les paliers

Get full access to this article

View all available purchase options and get full access to this article.


Adami A., Corvino R.B., Calmelat R.A., Porszasz J., Casaburi R., and Rossiter H.B. 2020. Muscle oxidative capacity is reduced in both upper and lower limbs in COPD. Med. Sci. Sports Exerc. 52(10): 2061–2068.
Akima H., Kinugasa R., and Kuno S. 2005. Recruitment of the thigh muscles during sprint cycling by muscle functional magnetic resonance imaging. Int. J. Sports. Med. 26(4): 245–252.
Andersson J.P.A., Liner M.H., Fredsted A., and Schagatay E.K.A. 2004. Cardiovascular and respiratory responses to apneas with and without face immersion in exercising humans. J. Appl. Physiol (1985), 96(3): 1005–1010.
Boone J. and Bourgois J. 2012. The oxygen uptake response to incremental ramp exercise. Sports Med. 42(6): 511–526.
Cerretelli, P., and di Prampero, P. E. 1987. Gas exchange in exercise. In Handbook of Physiology, Section 3, The Respiratory System, vol. IV. Edited by L.E. Fahri, and S.M. Tenney. American Physiological Society. pp. 297–339.
Barstow T.J., Jones A.M., Nguyen P.H., and Casaburi R. 1996. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J. Appl. Physiol. (1985), 81(4): 1642–1650.
Beaver W.L., Wasserman K., and Whipp B.J. 1986. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. (1985), 60(6): 2020–2027.
Borrani F., Candau R., Millet G.Y., Perrey S., Fuchslocher J., and Rouillon J.D. 2001. Is the VO2 slow component dependent on progressive recruitment of fast-twitch fibers in trained runners? J. Appl. Physiol. (1985), 90(6): 2212–2220.
DeLorey D.S., Kowalchuk J.M., and Paterson D.H. 2004. Effect of age on O2 uptake kinetics and the adaptation of muscle deoxygenation at the onset of moderate-intensity cycling exercise. J. Appl. Physiol. (1985), 97(1): 165–172.
Dogra S., Spencer M.D., Murias J.M., and Paterson D.H. 2013. Oxygen uptake kinetics in endurance-trained and untrained postmenopausal women. Appl. Physiol. Nutr. Metab. 38(2): 154–160.
Francescato M.P., Cettolo V., and di Prampero P.E. 2013. Oxygen uptake kinetics at work onset: role of cardiac output and of phosphocreatine breakdown. Respir. Physiol. Neurobiol. 185(2): 287–295.
García-García O., Cuba-Dorado A., Fernández-Redondo D., and López-Chicharro J. 2018. Neuromuscular parameters predict the performance in an incremental cycling test. Int. J. Sports Med. 39(12): 909–915.
Grassi B., Pogliaghi S., Rampichini S., Quaresima V., Ferrari M., Marconi C., and Cerretelli P. 2003. Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J. Appl. Physiol. (1985), 95(1): 149–158.
Grey T.M., Spencer M.D., Belfry G.R., Kowalchuk J.M., Paterson D.H., and Murias J.M. 2015. Effects of age and long-term endurance training on VO2 kinetics. Med. Sci. Sports Exerc. 47(2): 289–298.
Gifford J.R., Garten R.S., Nelson A.D., Trinity J.D., Layec G., Witman M.A.H., et al. 2016. Symmorphosis and skeletal muscle VO2 max: in vivo and in vitro measures reveal differing constraints in the exercise trained and untrained human. J. Physiol. 594(6): 1741–1751.
Hart E.C., Charkoudian N., Wallin B.G., Curry T.B., Eisenach J.H., and Joyner M.J. 2009. Sex differences in sympathetic neural-hemodynamic balance implications for human blood pressure regulation. Hypertension, 53(3): 571–576.
Heckman C.J. and Enoka R.M. 2012. Motor unit. Compr. Physiol. 2(4): 2629–2682.
Iannetta D., de Almeida Azevedo R., Keir D.A., and Murias J.M. 2019. Establishing the O2 versus constant-work-rate relationship from ramp-incremental exercise: simple strategies for an unsolved problem. J. Appl. Physiol. (1985), 127(6): 1519–1527.
Iannetta D., Inglis E.C., Mattu A.T., Fontana F.Y., Pogliaghi S., Keir D.A., and Murias J.M. 2020. A critical evaluation of current methods for exercise prescription in women and men. Med. Sci. Sports. Exerc. 52(2): 466–473.
Ivančev V., Palada I., Valic Z., Obad A., Bakovic D., Dietz N.M., et al. 2007. Cerebrovascular reactivity to hypercapnia is unimpaired in breath-hold divers. J. Physiol. 582(2): 723–730.
Jellema W.T., Wesseling K.H., Groeneveld A.B., Stoutenbeek C.P., Thijs L.G., and van Lieshout J.J. 1999. Continuous cardiac output in septic shock by simulating a model of the aortic input impedance: a comparison with bolus injection thermodilution. Anesthesiology, 90(5): 1317–1328.
Kaminsky L.A., Imboden M.T., Arena R., and Myers J. 2017. Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing using cycle ergometry: Data from the Fitness Registry and the Importance of Exercise National Database (FRIEND) registry. Mayo Clin. Proc. 92(2): 228–233.
Kordi M., Folland J., Goodall S., Haralabidis N., Maden-Wilkinson T., Sarika Patel T., et al. 2020. Mechanical and morphological determinants of peak power output in elite cyclists. Scand. J. Med. Sci. Sports, 30(2): 227–237.
Koschate J., Drescher U., Brinkmann C., Baum K., Schiffer T., Latsch J., et al. 2016a. Faster heart rate and muscular oxygen uptake kinetics in type 2 diabetes patients following endurance training. Appl. Physiol. Nutr. Metab. 41(11): 1146–1154.
Koschate J., Drescher U., Baum K., Eichberg S., Schiffer T., Latsch J., et al. 2016b. Muscular oxygen uptake kinetics in aged adults. Int. J. Sports Med. 37(7): 516–524.
Koga S., Okushima D., Barstow T.J., Rossiter H.B., Kondo N., and Poole D.C. 2017. Near-infrared spectroscopy of superficial and deep rectus femoris reveals markedly different exercise response to superficial vastus lateralis. Physiol. Rep. 5(17): e13402.
Keir D.A., Paterson D.H., Kowalchuk J.M., and Murias J.M. 2018. Using ramp-incremental VO2 responses for constant-intensity exercise selection. Appl. Physiol. Nutr. Metab. 43(9): 882–892.
Mattu A.T., Iannetta D., MacInnis M.J., Doyle-Baker P.K., and Murias J.M. 2020. Menstrual and oral contraceptive cycle phases do not affect submaximal and maximal exercise responses. Scand. J. Med. Sci. Sports, 30(3): 472–484.
Mezzani A., Grassi B., Giordano A., Corrà U., Colombo S., and Giannuzzi P. 2010. Age-related prolongation of phase I of VO2 on-kinetics in healthy humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299(3): 968–976.
Mitchell E.A., Martin N.R., Bailey S.J., and Ferguson R.A. 2018. Critical power is positively related to skeletal muscle capillarity and type I muscle fibers in endurance-trained individuals. J. Appl. Physiol. (1985), 125(3): 737–745.
Mora-Rodriguez R., Fernandez-Elias V.E., Morales-Palomo F., Pallares J.G., Ramirez-Jimenez M., and Ortega J.F. 2017. Aerobic interval training reduces vascular resistances during submaximal exercise in obese metabolic syndrome individuals. Eur. J. Appl. Physiol. 117(10): 2065–2073.
Murias J.M., Kowalchuk J.M., and Paterson D.H. 2011. Speeding of VO2 kinetics in response to endurance-training in older and young women. Eur. J. Appl. Physiol. 111(2): 235–243.
Murias J.M. and Paterson D.H. 2015. Slower VO2 kinetics in older individuals: is it inevitable? Med. Sci. Sports Exerc. 47(11): 2308–2318.
Poole D.C., Schaffartzik W., Knight D.R., Derion T., Kennedy B., Guy H.J., et al. 1991. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J. Appl. Physiol. (1985), 71(4): 1245–1260.
Poole D.C., Wilkerson D.P., and Jones A.M. 2008. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur. J. Appl. Physiol. 102(4): 403–410.
Pišot R., Narici M.V., Šimunič B., De Boer M., Seynnes O., Jurdana M., et al. 2008. Whole muscle contractile parameters and thickness loss during 35-day bed rest. Eur. J. Appl. Physiol. 104(2): 409–414.
Pringle J.S.M., Doust J.H., Carter H., Tolfrey K., Campbell I.T., Sakkas G.K., and Jones A.M. 2003. Oxygen uptake kinetics during moderate, heavy and severe intensity 'submaximal' exercise in humans: the influence of muscle fibre type and capillarisation. Eur. J. Appl. Physiol. 89(3–4): 289–300.
Rossiter H.B., Kowalchuk J.M., and Whipp B.J. 2006. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J. Appl. Physiol. (1985), 100(3): 764–770.
Siline L., Stasiule L., and Stasiulis A. 2020. The effect of age and training status on oxygen uptake kinetics in women. Respir. Physiol. Neurobiol. 278: 103439. ..
Sims S.T. and Heather A.K. 2018. Myths and methodologies: Reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp. Physiol. 103(10): 1309–1317.
Šimunič B., Degens H., Rittweger J., Narici M., Mekjavič I.B., and Pišot R. 2011. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med. Sci. Sports. Exerc. 43(9): 1619–1625.
Šimunič B., Koren K., Rittweger J., Lazzer S., Reggiani C., Rejc E., et al. 2019. Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture. J. Appl. Physiol. (1985), 126(4): 815–822.
Tanaka H., Monahan K.D., and Seals D.R. 2001. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 37(1): 153–156.
Valic Z., Palada I., Bakovic D., Valic M., Mardesic-Brakus S., and Dujic Z. 2006. Muscle oxygen supply during cold face immersion in breath-hold divers and controls. Aviat. Space Environ. Med. 77: 1224–1229.
Valenzuela P.L., Maffiuletti N.A., Joyner M.J., Lucia A., and Lepers R. 2020. Lifelong endurance exercise as a countermeasure against age-related decline: physiological overview and insights from masters athletes. Sports Med. 50(4):703–716.
Whipp B.J., Rossiter H.B., and Ward S.A. 2002. Exertional oxygen uptake kinetics: a stamen of stamina? Biochem. Soci. Trans. 30(2): 237–247.
Whipp B.J. and Wasserman K. 1972. Oxygen uptake kinetics for various intensities of constant-load work. J. Appl. Physiol. (1985), 33(3): 351–356.
Zuccarelli L., Porcelli S., Rasica L., Marzorati M., and Grassi B. 2018. Comparison between slow components of HR and VO2 kinetics: functional significance. Med. Sci. Sports Exerc. 50(8): 1649–1657.

Supplementary Material

Supplementary data (apnm-2020-0307suppla.jpg)

Information & Authors


Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 46Number 2February 2021
Pages: 108 - 116


Received: 22 April 2020
Accepted: 29 June 2020
Accepted manuscript online: 8 July 2020
Version of record online: 8 July 2020


Request permissions for this article.

Key Words

  1. ageing
  2. O2
  3. muscle fiber composition
  4. near infrared spectroscopy
  5. cycling


  1. vieillissement
  2. O2
  3. composition des fibres musculaires
  4. spectroscopie proche infrarouge
  5. cyclisme



Damir Zubac [email protected]
Institute for Kinesiology Research, Science and Research Center of Koper, Koper, Slovenia.
Faculty of Kinesiology, University of Split, Split, Croatia.
Vladimir Ivančev
Faculty of Kinesiology, University of Split, Split, Croatia.
Zoran Valić
Department of Integrative Physiology, University of Split, School of Medicine, Split, Croatia.
Boštjan Šimunič
Institute for Kinesiology Research, Science and Research Center of Koper, Koper, Slovenia.


Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Muscle contraction time after caffeine intake is faster after 30 minutes than after 60 minutes
2. Perioperative Exercise Testing in Pregnant and Non-Pregnant Women of Reproductive Age: A Systematic Review
3. Larger splenic emptying correlate with slower EPOC kinetics in healthy men and women during supine cycling
4. Neuromuscular changes after a Long Distance Triathlon World Championship
5. No differences in splenic emptying during on-transient supine cycling between aerobically trained and untrained participants
6. Determination of exercise intensity domains during upright versus supine cycling: a methodological study
7. Independent influence of age on heart rate recovery after flywheel exercise in trained men and women
8. Spleen emptying does not correlate with faster oxygen kinetics during a step-transition supine cycling
9. A Randomized Crossover Trial on the Acute Cardiovascular Demands During Flywheel Exercise
10. Acute flywheel exercise does not impair the brachial artery vasodilation in healthy men of varying aerobic fitness

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media