Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Rest-pause and drop-set training elicit similar strength and hypertrophy adaptations compared with traditional sets in resistance-trained males

Publication: Applied Physiology, Nutrition, and Metabolism
14 July 2021

Abstract

This paper aimed to compare the effect of drop-set (DS) and rest-pause (RP) systems versus traditional resistance training (TRT) with equalized total training volume on maximum dynamic strength (1RM) and thigh muscle thickness (MT). Twenty-eight resistance-trained males were randomly assigned to either RP (n = 10), DS (n = 9) or TRT (n = 9) protocols performed twice a week for 8 weeks. 1RM and MT of the proximal, middle and distal portions of the lateral thigh were assessed at baseline and post-intervention. A significant time × group interaction was observed for 1RM (P = 0.001) in the barbell back squat after 8-weeks. Post hoc comparisons revealed that RP promoted higher 1RM than TRT (P = 0.001); no statistical differences in strength were observed between the other conditions. A significant main effect of time was revealed for MT at the proximal (P = 0.0001) and middle (P = 0.0001) aspects of the lateral thigh for all training groups; however, the distal portion did not show a time effect (P = 0.190). There were no between-group interactions for MT. Our findings suggest that RP promotes slightly superior strength-related improvements compared with TRT, but hypertrophic adaptations are similar between conditions.
Novelty:
Rest-pause elicited a slightly superior benefit for strength adaptations compared with traditional resistance training.
Resistance training systems do not promote superior hypertrophic adaptations when total training volume is equalized.
Muscle thickness in distal portion of thigh is similar to baseline. Although modest, effect sizes tended to favor rest-pause.

Résumé

Le présent article compare l’effet des systèmes d’entraînement par décroissance (« DS ») et repos-pause (« RP ») par rapport à l’entraînement traditionnel en résistance (« TRT ») avec un volume d’entraînement total égalisé sur la force dynamique maximale (« 1RM ») et le volume musculaire de la cuisse (« MT »). Vingt-huit hommes entraînés en résistance sont assignés de façon aléatoire aux protocoles RP (n = 10), DS (n = 9) ou TRT (n = 9) à raison de deux fois par semaine pendant 8 semaines. Le MT des parties proximale, moyenne et distale de la cuisse latérale et l’1RM sont évalués au début et après l’intervention. Après 8 semaines d’entraînement, on note une interaction significative temps × groupe pour l’1RM (P = 0,001) de l’accroupissement, charge au dos. Des comparaisons post hoc révèlent que le RP favorise un 1RM plus élevé que le TRT (P = 0,001) ; aucune différence statistique de l’1RM n’est observée dans les autres conditions. Un effet principal significatif du temps est observé pour le MT aux niveaux proximal (P = 0,0001) et médian (P = 0,0001) de la cuisse latérale pour tous les groupes d’entraînement ; cependant, la partie distale ne révèle pas d’effet temporel (P = 0,190). Il n’y a pas d’interactions entre les groupes concernant le MT. Nos résultats suggèrent que le RP favorise des améliorations légèrement supérieures de la force par rapport à TRT, mais les adaptations hypertrophiques sont similaires entre les conditions. [Traduit par la Rédaction]
Les nouveautés :
L’entraînement par repos-pause procure un avantage légèrement supérieur pour l’adaptation de la force par rapport à l’entraînement traditionnel en résistance.
Les systèmes d’entraînement en résistance ne favorisent pas des adaptations hypertrophiques supérieures lorsque le volume total d’entraînement est égalisé.
Le volume musculaire dans la partie distale de la cuisse est similaire aux valeurs initiales. Bien que modestes, les tailles d’effet ont tendance à favoriser l’entraînement comportant par repos-pause.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abe T., DeHoyos D.V., Pollock M.L., and Garzarella L. 2000. Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur. J. Appl. Physiol. 81(3): 174–180.
Angleri V., Ugrinowitsch C., and Libardi C.A. 2017. Crescent pyramid and drop-set systems do not promote greater strength gains, muscle hypertrophy, and changes on muscle architecture compared with traditional resistance training in well-trained men. Eur. J. Appl. Physiol. 117(2): 359–369.
Angleri V., Ugrinowitsch C., and Libardi C.A. 2020. Are resistance training systems necessary to avoid a stagnation and maximize the gains muscle strength and hypertrophy? Sci. Sports, 35: 65.e1–65.e16.
Beck T.W. 2013. The importance of a priori sample size estimation in strength and conditioning research. J. Strength Cond. Res. 27(8): 2323–2337.
Brown L.E. and Weir J.P. 2001. ASEP procedures recommendation I: accurate assessment of muscular strength and power. J. Exerc. Physiol. Online, 4(3): 1–21.
Caldwell A. and Vigotsky A.D. 2020. A case against default effect sizes in sport and exercise science. PeerJ, 8: e10314.
Cohen J. 1992. A power primer. Psychol. Bull. 112: 155–159.
Dias R.M.R., Cyrino E.S., Salvador E.P., Caldeira L.F.S., Nakamura F.Y., Papst R.R., et al. 2005. Influence of familiarization process on muscular strength assessment in 1-RM tests. Rev. Bras. Med. Esporte, 11(1): 34–38.
Ema R., Wakahara T., Miyamoto N., Kanehisa H., and Kawakami Y. 2013. Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training. Eur. J. Appl. Physiol. 113: 2691–2703.
Ema R., Sakaguchi M., Akagi R., and Kawakami Y. 2016. Unique activation of the quadriceps femoris during single-and multi-joint exercises. Eur. J. Appl. Physiol. 116(5): 1031–1041.
Escamilla R.F., Fleisig G.S., Zheng N., Barrentine S.W., Wilk K.E., and Andrews J.R. 1998. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med. Sci. Sports Exerc. 30(4): 556–569.
Figueiredo V.C., de Salles B.F., and Trajano G.S. 2018. Volume for muscle hypertrophy and health outcomes: the most effective variable in resistance training. Sports Med. 48(3): 499–505.
Fink J., Schoenfeld B.J., Kikuchi N., and Nakazato K. 2018. Effects of drop set resistance training on acute stress indicators and long-term muscle hypertrophy and strength. J. Sports Med. Phys. Fitness, 58(5): 597–605.
Hammarström D., Øfsteng S., Koll L., Hanestadhaugen M., Hollan I., Apró W., et al. 2020. Benefits of higher resistance-training volume are related to ribosome biogenesis. J. Physiol. 598: 543–565.
Hirono T., Ikezoe T., Taniguchi M., Tanaka H., Saeki J., Yagi M., et al. 2020. Relationship between muscle swelling and hypertrophy induced by resistance training. J. Strength Cond. Res. [in press].
Ho J., Tumkaya T., Aryal S., Choi H., and Claridge-Chang A. 2019. Moving beyond P values: data analysis with estimation graphics. Nat. Methods, 16(7): 565–566.
Korak J.A., Paquette M.R., Brooks J., Fuller D.K., and Coons J.M. 2017. Effect of rest-pause vs. traditional bench press training on muscle strength, electromyography, and lifting volume in randomized trial protocols. Eur. J. Appl. Physiol. 117(9): 1891–1896.
Kraemer W.J. and Ratamess N.A. 2004. Fundamentals of resistance training: progression and exercise prescription. Med. Sci. Sport. Exerc. 36(4): 674–688.
Krzysztofik M., Wilk M., Wojdała G., and Gołaś A. 2019. Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. Int. J. Environ. Res. Public Health, 16: 4897.
Lynn S.K. and Noffal G.J. 2012. Lower extremity biomechanics during a regular and counterbalanced squat. J. Strength Cond. Res. 26: 2417–2425.
Mangine G.T., Redd M.J., Gonzalez A.M., Townsend J.R., Wells A.J., Jajtner A.R., et al. 2018. Resistance training does not induce uniform adaptations to quadriceps. PLoS One, 13(8): e0198304.
Marshall P.W.M., Robbins D.A., Wrightson A.W., and Siegler J.C. 2012. Acute neuromuscular and fatigue responses to the rest-pause method. J. Sci. Med. Sport, 15: 153–158.
Mertz W., Tsui J.C., Judd J.T., Reiser S., Hallfrisch J., Morris E.R., et al. 1991. What are people really eating? The relation between energy intake derived from estimated diet records and intake determined to maintain body weight. Am. J. Clin. Nutr. 54(2): 291–295.
Narici M.V., Hoppeler H., Kayser B., Landoni L., Claassen H., Gavardi C., et al. 1996. Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol. Scand. 157(2): 175–186.
Ozaki H., Kubota A., Natsume T., Loenneke J.P., Abe T., Machida S., and Naito H. 2018. Effects of drop sets with resistance training on increases in muscle CSA, strength, and endurance: a pilot study. J. Sports Sci. 36: 691–696.
Prestes J., Tibana R.A., de Araujo Sousa E., da Cunha Nascimento D., de Oliveira Rocha P., Camarço N.F., et al. 2019. Strength and muscular adaptations after 6 weeks of rest-pause vs. traditional multiple-sets resistance training in trained subjects. J. Strength Cond. Res. 33: S113–S121.
Ratamess N., Alvar B., Evetoch T., Housh T., Kibler W., Kraemer W., and Triplett N.T. 2009. Progression models in resistance training for healthy adults. Med. Sci. Sport. Exerc. 41(3): 687–708.
Schoenfeld B. 2011. The use of specialized training techniques to maximize muscle hypertrophy. Strength Cond. J. 33(4): 60–65.
Schoenfeld B.J. 2013. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 43(3): 179–194.
Schoenfeld B.J., Contreras B., Tiryaki-Sonmez G., Wilson J.M., Kolber M.J., and Peterson M.D. 2015a. Regional differences in muscle activation during hamstrings exercise. J. Strength Cond. Res. 29: 159–164.
Schoenfeld B.J., Peterson M.D., Ogborn D., Contreras B., and Sonmez G.T. 2015b. Effects of low-vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. J. Strength Cond. Res. 29(10): 2954–2963.
Schoenfeld B.J., Ogborn D., and Krieger J.W. 2017. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J. Sports Sci. 35: 1073–1082.
Schoenfeld B.J., Grgic J., Haun C., Itagaki T., and Helms E.R. 2019. Calculating set-volume for the limb muscles with the performance of multi-joint exercises: implications for resistance training prescription. Sports, 7(7): 177.
Wakahara T., Ema R., Miyamoto N., and Kawakami Y. 2017. Inter- and intramuscular differences in training-induced hypertrophy of the quadriceps femoris: association with muscle activation during the first training session. Clin. Physiol. Funct. Imaging, 37: 405–412.
Weir J.P. 2005. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 19(1): 231–240.
Wells A.J., Fukuda D.H., Hoffman J.R., Gonzalez A.M., Jajtner A.R., Townsend J.R., et al. 2014. Vastus lateralis exhibits non-homogenous adaptation to resistance training. Muscle Nerve, 50(5): 785–793.
Zabaleta-Korta A., Fernández-Peña E., and Santos-Concejero J. 2020. Regional hypertrophy, the inhomogeneous muscle growth: a systematic review. Strength Cond. J. 42: 94–101.

Information & Authors

Information

Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 46Number 11November 2021
Pages: 1417 - 1424

History

Received: 6 April 2021
Accepted: 11 July 2021
Accepted manuscript online: 14 July 2021
Version of record online: 14 July 2021

Permissions

Request permissions for this article.

Key Words

  1. muscle thickness
  2. rest-pause
  3. drop-set
  4. skeletal muscle hypertrophy
  5. muscle strength
  6. resistance training

Mots-clés

  1. volume musculaire
  2. repos-pause
  3. décroissance
  4. hypertrophie des muscles squelettiques
  5. force musculaire
  6. entraînement en résistance

Authors

Affiliations

Alysson Enes [email protected]
Metabolism, Nutrition and Resistance Training Research Group (GPMENUTF), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
Ragami C. Alves
Metabolism, Nutrition and Resistance Training Research Group (GPMENUTF), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
Brad J. Schoenfeld
Department of Health Sciences, CUNY Lehman College, Bronx, NY, USA.
Gustavo Oneda
Exercise Performance Research Group (CEPEFIS), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
Samuel C. Perin
Metabolism, Nutrition and Resistance Training Research Group (GPMENUTF), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
Thiago B. Trindade
Graduation Program in Physical Education, Catholic University of Brasilia (UCB), Brasília, DF, Brazil.
Jonato Prestes
Graduation Program in Physical Education, Catholic University of Brasilia (UCB), Brasília, DF, Brazil.
Tácito P. Souza-Junior
Metabolism, Nutrition and Resistance Training Research Group (GPMENUTF), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.

Notes

© 2021 The Author(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1.
2. Supplementing With Which Form of Creatine (Hydrochloride or Monohydrate) Alongside Resistance Training Can Have More Impacts on Anabolic/Catabolic Hormones, Strength and Body Composition?
3. Resistance Exercise Minimal Dose Strategies for Increasing Muscle Strength in the General Population: an Overview
4. Highlighting the effect of reduced training volume on maintaining hormonal adaptations obtained from periodized resistance training in sarcopenic older women
5. Effect of a resistance exercise at acute moderate altitude on muscle health biomarkers
6. Effects of Drop Sets on Skeletal Muscle Hypertrophy: A Systematic Review and Meta-analysis
7. A comparative analysis of the effects of drop set and traditional resistance training on anaerobic power in young men
8. Comparison of Traditional and Advanced Resistance Training Paradigms on Muscle Hypertrophy in Trained Individuals: A Systematic Review and Meta-Analysis
9. effects of a single or multi-step drop-set training compared to traditional resistance training on muscle performance and body composition
10. Twelve Weeks Rest–Pause and Traditional Resistance Training: Effects on Myokines and Performance Adaptations among Recreationally Trained Men
11. Validity, reliability and measurement error of quadriceps femoris muscle thickness obtained by ultrasound in healthy adults: a systematic review
12. The sciatic and radial nerves seem to adapt similarly to different ladder-based resistance training protocols

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media