Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

The acute effect of maximal exercise on arterial stiffness in adults with and without intellectual and developmental disabilities

Publication: Applied Physiology, Nutrition, and Metabolism
7 September 2022

Abstract

We compared central and peripheral arterial stiffness response patterns between persons with and without intellectual and developmental disabilities (IDD) of different age groups at rest and following a cardiopulmonary exercise test (CPET). Fifteen young adults with and without IDD, and 15 middle-aged adults without IDD performed a CPET. Central and peripheral arterial stiffness were measured at rest and following CPET using estimates of carotid-femoral (cfPWV), carotid-radial (crPWV), and carotid-ankle (cdPWV) pulse wave velocity derived from piezoelectric mechano-transducers. cfPWV remained unchanged following CPET in adults with and without IDD but increased in middle-aged adults (d = 0.85; 95% CI: 0.27–1.42 m·s–1, p = 0.005), whereas cdPWV was similarly reduced (d = –0.77; 95% CI: –1.06 to –0.48 m·s–1, p < 0.001) in all groups. crPWV remained unchanged in all groups. These results were independent of exercise-related changes in mean arterial pressure. Overall group differences suggested that persons with IDD (d = –1.78; 95% CI: –3.20 to –0.37 m·s–1, p = 0.009) and without IDD (d = –1.84; 95% CI: –3.26 to –0.43 m·s–1, p = 0.007) had lower cfPWV than middle-aged adults. We found no evidence of early vascular aging and diminished vascular reserve following CPET in adults with IDD.

Résumé

Nous avons comparé les schémas de réponse de la rigidité artérielle centrale et périphérique entre des personnes avec et sans déficience intellectuelle et développementale (« IDD ») de différents groupes d'âge au repos et après un test d'effort cardiopulmonaire (« CPET »). Quinze jeunes adultes avec et sans IDD et 15 adultes d'âge moyen sans IDD ont effectué un CPET. La rigidité artérielle centrale et périphérique a été mesurée au repos et après le CPET à l'aide d'estimations de la vitesse de l'onde de pouls carotide-fémorale (« cfPWV »), carotide-radiale (« crPWV ») et carotide-cheville (« cdPWV ») dérivée de mécano-transducteurs piézoélectriques. La cfPWV est demeurée inchangée après le CPET chez les adultes avec et sans IDD, mais a augmenté chez les adultes d'âge moyen (d = 0,85; IC à 95 % : 0,27 à 1,42 m·s–1, p = 0,005) tandis que la cdPWV a été réduite de manière similaire (d = –0,77; IC 95% : –1,06 à –0,48 m·s–1, p < 0,001) dans tous les groupes. La crPWV est restée inchangée dans tous les groupes. Ces résultats étaient indépendants des changements de la pression artérielle moyenne liés à l'exercice. Les différences globales entre les groupes suggèrent que les personnes avec IDD (d = –1,78; IC à 95 % : –3,20 à –0,37 m·s–1, p = 0,009) et sans IDD (d = –1,84; IC à 95 % : –3,26 à –0,43 m·s–1, p = 0,007) avaient une cfPWV inférieure à celle des adultes d'âge moyen. Nous n'avons relevé aucune donnée probante d'un vieillissement vasculaire précoce et d'une diminution de la réserve vasculaire à la suite d'un CPET chez des adultes avec IDD. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Axmon A., Ahlström G., Höglund P. 2017. Prevalence and treatment of diabetes mellitus and hypertension among older adults with intellectual disability in comparison with the general population. BMC Geriatr. 17(1): 272.
Baynard T., Pitetti K.H., Guerra M., Unnithan V., Fernhall B. 2008. Age-related changes in aerobic capacity in individuals with mental retardation: a 20-yr review. Med. Sci. Sports Exerc. 40(11): 1984–1989.
Bittles A.H., Petterson B.A., Sullivan S.G., Hussain R., Glasson E.J., Montgomery P.D. 2002. The influence of intellectual disability on life expectancy. J. Gerontol. A Biol. Sci. Med. Sci. 57(7): M470–M472.
Blacher J., Guerin A.P., Pannier B., Marchais S.J., Safar M., London G.M. 1999. Impact of aortic stiffness on survival in end-stage renal disease. Circulation, 99(18): 2434–2439.
Boonman A.J.N., Schroeder E.C., Hopman M.T.E., Fernhall B.O., Hilgenkamp T.I.M. 2019. Cardiopulmonary profile of individuals with intellectual disability. Med. Sci. Sports Exerc. 51(9): 1802–1808.
Dawson E.A., Green D.J., Timothy Cable N., Thijssen D.H.J. 2013. Effects of acute exercise on flow-mediated dilatation in healthy humans. J. Appl. Physiol. 115(11): 1589–1598.
de Winter C.F., Bastiaanse L.P., Hilgenkamp T.I., Evenhuis H.M., Echteld M.A. 2012. Overweight and obesity in older people with intellectual disability. Res. Dev. Disabil. 33(2): 398–405.
de Winter C.F., Magilsen K.W., van Alfen J.C., Penning C., Evenhuis H.M. 2009. Prevalence of cardiovascular risk factors in older people with intellectual disability. Am. J. Intellect. Dev. Disabil. 114(6): 427–436.
Fernhall B., McCubbin J.A., Pitetti K.H., Rintala P., Rimmer J.H., Millar A.L., De Silva A. 2001. Prediction of maximal heart rate in individuals with mental retardation. Med. Sci. Sports Exerc. 33(10): 1655–1660.
Fernhall B., Mendonca G.V., Baynard T. 2013. Reduced work capacity in individuals with Down syndrome: a consequence of autonomic dysfunction? Exerc. Sport Sci. Rev. 41(3): 138–147.
Fernhall B., Millar A.L., Tymeson G.T., Burkett L.N. 1990. Maximal exercise testing of mentally retarded adolescents and adults: reliability study. Arch. Phys. Med. Rehabil. 71(13): 1065–1068.
Flore P., Bricout V.A., van Biesen D., Guinot M., Laporte F. Pépin J.L., et al. 2008. Oxidative stress and metabolism at rest and during exercise in persons with Down syndrome. Eur. J. Cardiovasc. Prev. Rehabil. 15(1): 35–42.
Gando Y., Kawano H., Yamamoto K., Sanada K., Tanimoto M. Oh T., et al. 2010. Age and cardiorespiratory fitness are associated with arterial stiffening and left ventricular remodelling. J. Hum. Hypertens. 24(3): 197–206.
Gellish R.L., Goslin B.R., Olson R.E., McDonald A., Russi G.D., Moudgil V.K. 2007. Longitudinal modeling of the relationship between age and maximal heart rate. Med. Sci. Sports Exerc. 39(5): 822–829.
Girerd X., Laurent S., Pannier B., Asmar R., Safar M. 1991. Arterial distensibility and left ventricular hypertrophy in patients with sustained essential hypertension. Am. Heart J. 122(4 Pt 2): 1210–1214, http://www.ncbi.nlm.nih.gov/pubmed/1833966.
Goto C., Higashi Y., Kimura M., Noma K., Hara K. Nakagawa K., et al. 2003. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation, 108(5): 530–535.
Hamilton P.K., Lockhart C.J., Quinn C.E., McVeigh G.E. 2007. Arterial stiffness: clinical relevance, measurement and treatment. Clin. Sci. (Lond.), 113(4): 157–170.
Heffernan K.S., Jae S.Y., Echols G.H., Lepine N.R., Fernhall B. 2007. Arterial stiffness and wave reflection following exercise in resistance-trained men. Med. Sci. Sports Exerc. 39(5): 842–848.
Horvath S., Garagnani P., Bacalini M.G., Pirazzini C., Salvioli S. Gentilini D., et al. 2015. Accelerated epigenetic aging in Down syndrome. Aging Cell, 14(3): 491–495.
Hotta H., Uchida S. 2010. Aging of the autonomic nervous system and possible improvements in autonomic activity using somatic afferent stimulation. Geriatr. Gerontol. Int. 10(Suppl. 1): 127–136.
Hu M., Yan H., Ranadive S.M., Agiovlasitis S., Fahs C.A. Atiq M., et al. 2013a. Arterial stiffness response to exercise in persons with and without Down syndrome. Res. Dev. Disabil. 34(10): 3139–3147.
Hu M., Yan H., Ranadive S.M., Agiovlasitis S., Fahs C.A., Atiq M., et al. 2013b. Arterial stiffness response to exercise in persons with and without Down syndrome. Res. Dev. Disabil. 34(10): 3139–3147.
Jae S.Y., Ahn E.S., Heffernan K.S., Woods J.A., Lee M.K., Park W.H., Fernhall B. 2007. Relation of heart rate recovery after exercise to C-reactive protein and white blood cell count. Am. J. Cardiol. 99(5): 707–710.
Janicki M.P., Dalton A.J., Henderson C.M., Davidson P.W. 1999. Mortality and morbidity among older adults with intellectual disability: health services considerations. Disabil. Rehabil. 21(5–6): 284–294.
Kaess B.M., Rong J., Larson M.G., Hamburg N.M., Vita J.A. Levy D., et al. 2012. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA, 308(9): 875–881.
Kim H.L., Kim S.H. 2019. Pulse wave velocity in atherosclerosis. Front. Cardiovasc. Med. 6: 41.
Lauer E., McCallion P. 2015. Mortality of people with intellectual and developmental disabilities from select US state disability service systems and medical claims data. J. Appl. Res. Intellect. Disabil. 28(5): 394–405.
Lee H.Y., Oh B.H. 2010. Aging and arterial stiffness. Circ. J. 74(11): 2257–2262.
Lim J., Pearman M., Park W., Alkatan M., Tanaka H. 2016. Interrelationships among various measures of central artery stiffness. Am. J. Hypertens. 29(9): 1024–1028.
McKenzie K., Martin L., Ouellette-Kuntz H. 2016. Frailty and intellectual and developmental disabilities: a scoping review. Can. Geriatr. J. 19(3): 103–112.
Melo X., Fernhall B., Santos D.A., Pinto R., Pimenta N.M., Sardinha L.B., Santa-Clara H. 2016. The acute effect of maximal exercise on central and peripheral arterial stiffness indices and hemodynamics in children and adults. Appl. Physiol. Nutr. Metab. 41(3): 266–276.
Miotto D.S., Dionizio A., Jacomini A.M., Zago A.S., Buzalaf M.A.R., Amaral S.L. 2021. Identification of aortic proteins involved in arterial stiffness in spontaneously hypertensive rats treated with Perindopril: a proteomic approach. Front. Physiol. 12: 624515.
Mitchell G.F., Parise H., Benjamin E.J., Larson M.G., Keyes M.J. Vita J.A., et al. 2004. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham heart study. Hypertension, 43(6): 1239–1245.
Moncada S., Higgs E.A. 2006. The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol. 147(Suppl. 1): S193–S201.
Murdoch J.C., Rodger J.C., Rao S.S., Fletcher C.D., Dunnigan M.G. 1977. Down's syndrome: an atheroma-free model? Br. Med. J. 2(6081): 226–228.
Mutter A.F., Cooke A.B., Saleh O., Gomez Y.H., Daskalopoulou S.S. 2017. A systematic review on the effect of acute aerobic exercise on arterial stiffness reveals a differential response in the upper and lower arterial segments. Hypertens. Res. 40(2): 146–172.
Oliveira L.F., Chaves T.F., Baretto N., de Luca G.R., Barbato I.T. Barbato Filho J.H., et al. 2020. Etiology of intellectual disability in individuals from special education schools in the south of Brazil. BMC Pediatr. 20(1): 506.
Oppewal A., Hilgenkamp T.I., van Wijck R., Evenhuis H.M. 2013. Cardiorespiratory fitness in individuals with intellectual disabilities—a review. Res. Dev. Disabil. 34(10): 3301–3316.
O'Rourke M.F., Safar M.E. 2005. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension, 46(1): 200–204.
Ouellette-Kuntz H., Martin L., Burke E., McCallion P., McCarron M. McGlinchey E., et al. 2019. How best to support individuals with IDD as they become frail: development of a consensus statement. J. Appl. Res. Intellect. Disabil. 32(1): 35–42.
Pase M.P., Himali J.J., Mitchell G.F., Beiser A., Maillard P. Tsao C., et al. 2016. Association of aortic stiffness with cognition and brain aging in young and middle-aged adults: the Framingham third generation cohort study. Hypertension, 67(3): 513–519.
Peres D., Mourot L., Ménétrier A., Bouhaddi M., Degano B., Regnard J., Tordi N. 2018. Intermittent versus constant aerobic exercise in middle-aged males: acute effects on arterial stiffness and factors influencing the changes. Eur. J. Appl. Physiol. 118(8): 1625–1633.
R Core Team. 2021. R: A Language and Environment for Statistical Computing. Version 4.1. [Computer software.] Available from https://www.r-project.org/.
Riebe D., Ehrman J., Liguori G., Magal M. 2016. ACSM's guidelines for exercise testing and prescription, 10th ed. Wolters Kluwer Health.
Rode M., Teren A., Wirkner K., Horn K., Kirsten H. Loeffler M., et al. 2020. Genome-wide association analysis of pulse wave velocity traits provides new insights into the causal relationship between arterial stiffness and blood pressure. PLoS One, 15(8): e0237237.
Roy-Vallejo E., Galván-Román J.M., Moldenhauer F., Realde Asúa D. 2020. Adults with Down syndrome challenge another paradigm: when aging no longer entails arterial hypertension. J. Clin. Hypertens. 22(7): 1127–1133.
Salaun L., Berthouze-Aranda S. 2012. Physical fitness and fatness in adolescents with intellectual disabilities. J. Appl. Res. Intellect. Disabil. 25(3): 231–239.
Schillaci G., Pucci G. 2013. Lower-limb pulse wave velocity: correlations and clinical value. Hypertens. Res. 36(8): 679–681.
Schroeder E.C., DuBois L., Sadowsky M., Hilgenkamp T.I.M. 2020. Hypertension in adults with intellectual disability: prevalence and risk factors. Am. J. Prev. Med. 58(5): 630–637.
Seals D.R., Taylor R., Alex N., Esler M. 1994. Exercise and aging autonomic control of the circulation. Med. Sci. Sports Exerc. 26(5): 568–576.
Shibata S., Fujimoto N., Hastings J.L., Carrick-Ranson G., Bhella P.S., Hearon C.M., Levine B.D. 2018. The effect of lifelong exercise frequency on arterial stiffness. J. Physiol. 596(14): 2783–2795.
Solberg G., Robstad B., Skjønsberg O.H., Borchsenius F. 2005. Respiratory gas exchange indices for estimating the anaerobic threshold. J. Sports Sci. Med. 4(1): 29–36.
Steppan J., Jandu S., Savage W., Wang H., Kang S. Narayanan R., et al. 2020. Restoring blood pressure in hypertensive mice fails to fully reverse vascular stiffness. Front. Physiol. 11: 824.
Tordi N., Mourot L., Colin E., Regnard J. 2010. Intermittent versus constant aerobic exercise: effects on arterial stiffness. Eur. J. Appl. Physiol. 108(4): 801–809.
Vlachopoulos C., Aznaouridis K., Stefanadis C. 2010. Prediction of cardiovascular events and all-cause mortality with arterial stiffness. J. Am. Coll. Cardiol. 55(13): 1318–1327.
Wilkinson I.B., MacCallum H., Hupperetz P.C., Van Thoor C.J., Cockcroft J.R., Webb D.J. 2001. Changes in the derived central pressure waveform and pulse pressure in response to angiotensin II and noradrenaline in man. J. Physiol. 530(3): 541–550.

Information & Authors

Information

Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 47Number 10October 2022
Pages: 1005 - 1013

History

Received: 15 April 2022
Accepted: 8 July 2022
Accepted manuscript online: 12 July 2022
Version of record online: 7 September 2022

Data Availability Statement

Data are available upon reasonable request.

Permissions

Request permissions for this article.

Key Words

  1. intellectual disability
  2. middle-aged adults
  3. arterial stiffness
  4. pulse wave velocity
  5. cardiopulmonary exercise test
  6. treadmill

Mots-clés

  1. déficience intellectuelle
  2. adultes d'âge moyen
  3. rigidité artérielle
  4. vitesse de l'onde de pouls
  5. test d'effort cardiopulmonaire
  6. tapis roulant

Authors

Affiliations

Faculdade de Motricidade Humana – Universidade de Lisboa, CIPER – Centro Interdisciplinar de Estudo da Performance Humana, Estrada da Costa, Cruz Quebrada, Lisboa 1495-688, Portugal
Ginásio Clube Português, Research and Development Department, GCP Lab. Praça Ginásio Clube Português n.1, Lisboa 1250-111, Portugal
João Luís Marôco
Ginásio Clube Português, Research and Development Department, GCP Lab. Praça Ginásio Clube Português n.1, Lisboa 1250-111, Portugal
Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
Faculdade de Motricidade Humana – Universidade de Lisboa, CIPER – Centro Interdisciplinar de Estudo da Performance Humana, Estrada da Costa, Cruz Quebrada, Lisboa 1495-688, Portugal
Exercise and Cardiovascular Rehabilitation Laboratory, Centro Cardiovascular da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
Vitor Angarten
Faculdade de Motricidade Humana – Universidade de Lisboa, CIPER – Centro Interdisciplinar de Estudo da Performance Humana, Estrada da Costa, Cruz Quebrada, Lisboa 1495-688, Portugal
Manuel Coimbra
CERCIOEIRAS – Cooperativa de Educação e Reabilitação dos Cidadãos com Incapacidade, CRL, Rua 7 de Junho 57, Barcarena 2730-174, Portugal
Duarte Correia
CERCIOEIRAS – Cooperativa de Educação e Reabilitação dos Cidadãos com Incapacidade, CRL, Rua 7 de Junho 57, Barcarena 2730-174, Portugal
Mafalda Roque
CERCIOEIRAS – Cooperativa de Educação e Reabilitação dos Cidadãos com Incapacidade, CRL, Rua 7 de Junho 57, Barcarena 2730-174, Portugal
Joana Reis
Faculdade de Motricidade Humana – Universidade de Lisboa, CIPER – Centro Interdisciplinar de Estudo da Performance Humana, Estrada da Costa, Cruz Quebrada, Lisboa 1495-688, Portugal
Vanessa Santos
Faculdade de Motricidade Humana – Universidade de Lisboa, CIPER – Centro Interdisciplinar de Estudo da Performance Humana, Estrada da Costa, Cruz Quebrada, Lisboa 1495-688, Portugal
Bo Fernhall
Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
Helena Santa-Clara
Faculdade de Motricidade Humana – Universidade de Lisboa, CIPER – Centro Interdisciplinar de Estudo da Performance Humana, Estrada da Costa, Cruz Quebrada, Lisboa 1495-688, Portugal

Author Contributions

HSC and MC contributed to conception and design, critically revised the manuscript, and gave final approval. RP, VA, JR, DC, MR, and VS contributed to acquisition, analysis, critically revised the manuscript, and gave final approval. XM contributed to acquisition, analysis, interpretation, drafted the manuscript, and gave final approval. BF and JLM contributed to interpretation, critically revised the manuscript, and gave final approval.

Competing Interests

The authors have no conflict of interest. The authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Funding Information

The authors declare no specific funding for this work.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. The effectiveness of video-based exercise training program for people with intellectual disability: a multicenter study

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media