Inhibition of long noncoding RNA MALAT1 suppresses high glucose-induced apoptosis and inflammation in human umbilical vein endothelial cells by suppressing the NF-κB signaling pathway

Publication: Biochemistry and Cell Biology
5 June 2020

Abstract

The study investigated the expression of long noncoding RNA (lncRNA) MALAT1 in high glucose (HG)-induced human vascular endothelial cells (HUVECs) and the role of MALAT1 in the apoptosis of HG-induced HUVECs. The HUVECs were cultured and induced with 25 mmol/L HG. After that, the HUVECs were transfected with MALAT1 siRNA. The expression levels of MALAT1 were detected with qPCR, whereas the expression levels of Bax, Bcl-2, cleaved-caspase-3, cleaved-caspase-9, p-65, and p-p65 were detected using Western blot. The roles of MALAT1 in cell activities, including apoptosis, were evaluated using the CCK-8 assay, TUNEL staining, and flow cytometry. The expression levels of inflammatory factors (TNF-α and IL-6) were measured using ELISA. The expression levels of MALAT1, TNF-α, and IL-6 in HUVECs were increased in the HG environment; however, when MALAT1 was silenced in the HUVECs, cell proliferation increased significantly, the expression levels of TNF-α, IL-6, Bax, cleaved-caspase-3, and cleaved-caspase-9 decreased, and the rate of apoptosis also decreased. Silencing MALAT1 inhibited the expression of p-p65 in HG-induced HUVECs. In conclusion, our study demonstrated that MALAT1 is upregulated in HG-induced HUVECs, and inhibition of MALAT1 inhibits HG-induced apoptosis and inflammation in HUVECs by suppression of the NF-κB signaling pathway.

Résumé

Cette étude visait à examiner l’expression du long ARN non codant (ARNnc) MALAT1 dans les cellules vasculaires endothéliales humaines (HUVEC) exposées à une haute teneur en glucose (HG) et le rôle de MALAT1 dans l’apoptose des HUVEC induite par une HG. Les HUVEC ont été cultivées et stimulées avec 25 mmol/L de glucose. Ensuite, les HUVEC ont été transfectées avec un ARN interférent de MALAT1. L’expression de MALAT1 a été détectée par qPCR alors que l’expression de Bax, de Bcl-2, de la caspase-3 clivée, de la caspase-9 clivée, de p65 et de p-p65 a été détectée par buvardage Western. En parallèle, le rôle régulateur de MALAT1 dans l’activité cellulaire et l’apoptose a été détecté par un dosage avec le CCK-8, la coloration TUNEL et la cytométrie en flux. Par ailleurs, l’expression de facteurs inflammatoires (TNF-α, IL-6) a été détectée par ELISA. L’expression de MALAT1, du TNF-α et d’IL-6 dans les HUVEC était accrue dans un environnement à HG. Après que les HUVEC stimulées par une HG aient été soumises au silençage de MALAT1, il s’est avéré que la prolifération cellulaire augmentait significativement, que l’expression du TNF-α, d’IL-6, de Bax, de la caspase-3 clivée, de la caspase-9 clivée diminuait, et que l’apoptose diminuait. Le silençage de MALAT1 inhibait l’expression de p-p65 dans les HUVEC soumises à une HG. En conclusion, l’étude des auteurs a démontré que MALAT1 était régulé à la hausse dans les HUVEC stimulées par une HG, et l’inhibition de MALAT1 pouvait inhiber l’apoptose et l’inflammation induite par une HG dans les HUVEC par la suppression de la voie de signalisation du NF-κB. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

American Diabetes, A. 2009. Diagnosis and classification of diabetes mellitus. Diabetes Care, 32(Suppl. 1): S62–S67.
Ashcroft F.M. and Rorsman P. 2012. Diabetes mellitus and the beta cell: the last ten years. Cell, 148: 1160–1171.
Auger C., Said A., Nguyen P.N., Chabert P., Idris-Khodja N., and Schini-Kerth V.B. 2016. Potential of food and natural products to promote endothelial and vascular health. J. Cardiovasc. Pharmacol. 68: 11–18.
Baker R.G., Hayden M.S., and Ghosh S. 2011. NF-kappaB, inflammation, and metabolic disease. Cell Metab. 13: 11–22.
Bar C., Chatterjee S., and Thum T. 2016. Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Circulation, 134: 1484–1499.
Biswas S., Thomas A.A., Chen S., Aref-Eshghi E., Feng B., Gonder J., et al. 2018. MALAT1: An epigenetic regulator of inflammation in diabetic retinopathy. Sci. Rep. 8: 6526.
Busik J.V., Mohr S., and Grant M.B. 2008. Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes, 57: 1952–1965.
Chen H., Wang X., Yan X., Cheng X., He X., and Zheng W. 2018. LncRNA MALAT1 regulates sepsis-induced cardiac inflammation and dysfunction via interaction with miR-125b and p38 MAPK/NFkappaB. Int. Immunopharmacol. 55: 69–76.
Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus, Seino Y., Nanjo K., Tajima N., Kadowaki T., Kashiwagi A., et al. 2010. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig. 1: 212–228.
Fratantonio D., Speciale A., Canali R., Natarelli L., Ferrari D., Saija A., et al. 2017. Low nanomolar caffeic acid attenuates high glucose-induced endothelial dysfunction in primary human umbilical-vein endothelial cells by affecting NF-kappaB and Nrf2 pathways. Biofactors, 43: 54–62.
Gast M., Schroen B., Voigt A., Haas J., Kuehl U., Lassner D., et al. 2016. Long noncoding RNA MALAT1-derived mascRNA is involved in cardiovascular innate immunity. J. Mol. Cell. Biol. 8: 178–181.
Gibb E.A., Vucic E.A., Enfield K.S., Stewart G.L., Lonergan K.M., Kennett J.Y., et al. 2011. Human cancer long non-coding RNA transcriptomes. PLoS One, 6: e25915.
Granic I., Dolga A.M., Nijholt I.M., van Dijk G., and Eisel U.L. 2009. Inflammation and NF-kappaB in Alzheimer’s disease and diabetes. J. Alzheimers. Dis. 16: 809–821.
Gutschner T. and Diederichs S. 2012. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 9: 703–719.
Huarte M. and Rinn J.L. 2010. Large non-coding RNAs: missing links in cancer? Hum. Mol. Genet. 19: R152–R161.
Jayakumar T., Chang C.C., Lin S.L., Huang Y.K., Hu C.M., Elizebeth A.R., et al. 2014. Brazilin ameliorates high glucose-induced vascular inflammation via inhibiting ROS and CAMs production in human umbilical vein endothelial cells. Biomed. Res. Int. 2014: 403703.
Ji P., Diederichs S., Wang W., Boing S., Metzger R., Schneider P.M., et al. 2003. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22: 8031–8041.
Josipovic I., Fork C., Preussner J., Prior K.K., Iloska D., Vasconez A.E., et al. 2016. PAFAH1B1 and the lncRNA NONHSAT073641 maintain an angiogenic phenotype in human endothelial cells. Acta Physiol. (Oxf). 218(1): 13–27.
Kageyama S., Yokoo H., Tomita K., Kageyama-Yahara N., Uchimido R., Matsuda N., et al. 2011. High glucose-induced apoptosis in human coronary artery endothelial cells involves up-regulation of death receptors. Cardiovasc. Diabetol. 10: 73.
Li Y., Wu Z., Yuan J., Sun L., Lin L., Huang N., et al. 2017. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis. Cancer Lett. 395: 31–44.
Liu J.Y., Yao J., Li X.M., Song Y.C., Wang X.Q., Li Y.J., et al. 2014. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis. 5: e1506.
Liu R., Shen H., Wang T., Ma J., Yuan M., Huang J., et al. 2018. TRAF6 mediates high glucose-induced endothelial dysfunction. Exp. Cell Res. 370: 490–497.
Mariappan N., Elks C.M., Sriramula S., Guggilam A., Liu Z., Borkhsenious O., and Francis J. 2010. NF-kappaB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc. Res. 85: 473–483.
Michalik K.M., You X., Manavski Y., Doddaballapur A., Zornig M., Braun T., et al. 2014. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ. Res. 114: 1389–1397.
Min S.W. and Han J.S. 2013. Effect of Polyopes lancifolia extract on oxidative stress in human umbilical vein endothelial cells induced by high glucose. Prev. Nutr. Food Sci. 18: 38–44.
Nizamutdinova I.T., Guleria R.S., Singh A.B., Kendall J.A. Jr, Baker K.M., and Pan J. 2013. Retinoic acid protects cardiomyocytes from high glucose-induced apoptosis through inhibition of NF-kappaB signaling pathway. J. Cell. Physiol. 228: 380–92.
Palem, S.P., and Abraham, P. 2015. A study on the level of oxidative stress and inflammatory markers in type 2 diabetes mellitus patients with different treatment modalities. J. Clin. Diagn. Res. 9: BC04–BC07.
Pujadas G., De Nigris V., La Sala L., Testa R., Genovese S., and Ceriello A. 2016. The pivotal role of high glucose-induced overexpression of PKCbeta in the appearance of glucagon-like peptide-1 resistance in endothelial cells. Endocrine, 54: 396–410.
Puthanveetil P., Chen S., Feng B., Gautam A., and Chakrabarti S. 2015. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J. Cell. Mol. Med. 19: 1418–1425.
Rask-Madsen C. and King G.L. 2013. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 17: 20–33.
Shen Y.H., Wang L.Y., Zhang B.B., Hu Q.M., Wang P., He B.Q., et al. 2018. Ethyl rosmarinate protects high glucose-induced injury in human endothelial cells. Molecules, 23: 3372.
Song N., Wang H., Gu T., Qi J., Yang J., Qiu Y., et al. 2018. Sonic hedgehog-c-Jun N-terminal kinase-zinc finger protein Gli1 signaling protects against high glucose concentration-induced reactive oxygen species generation in human fibroblasts. Exp. Ther. Med. 15: 5084–5090.
Sotnikova R., Nedelcevova J., Navarova J., Nosalova V., Drabikova K., Szocs K., et al. 2011. Protection of the vascular endothelium in experimental situations. Interdiscip. Toxicol. 4: 20–26.
Tang R., Li Q., Lv L., Dai H., Zheng M., Ma K., and Liu B. 2010. Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc. Diabetol. 9: 31.
Thum T. and Fiedler J. 2014. LINCing MALAT1 and angiogenesis. Circ. Res. 114: 1366–1368.
Tripathi V., Shen Z., Chakraborty A., Giri S., Freier S.M., Wu X., et al. 2013. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet, 9: e1003368.
Tsai K.H., Wang W.J., Lin C.W., Pai P., Lai T.Y., Tsai C.Y., and Kuo W.W. 2012. NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-kappaB in cardiomyocytes exposed to high glucose. J. Cell. Physiol. 227: 1347–1357.
Xin J.W. and Jiang Y.G. 2017. Long noncoding RNA MALAT1 inhibits apoptosis induced by oxygen-glucose deprivation and reoxygenation in human brain microvascular endothelial cells. Exp. Ther. Med. 13: 1225–1234.
Yang Z., Mo X., Gong Q., Pan Q., Yang X., Cai W., et al. 2008. Critical effect of VEGF in the process of endothelial cell apoptosis induced by high glucose. Apoptosis, 13: 1331–1343.
Zhang W., Wang R., Han S.F., Bu L., Wang S.W., Ma H., and Jia G.L. 2007. Alpha-linolenic acid attenuates high glucose-induced apoptosis in cultured human umbilical vein endothelial cells via PI3K/Akt/eNOS pathway. Nutrition, 23: 762–770.
Zhang Z., Chen W., Wang Y., Xiong T., Zhou C., Yao X., and Lin B. 2017. Antioxidant and antiinflammatory effects of DHKmedicated serum on high glucoseinduced injury in endothelial cells. Mol. Med. Rep. 16: 7745–7751.
Zhao G., Su Z., Song D., Mao Y., and Mao X. 2016. The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-kappaB. FEBS Lett. 590: 2884–2895.
Zhou X., Liu S., Cai G., Kong L., Zhang T., Ren Y., et al. 2015. Long non coding RNA MALAT1 promotes tumor growth and metastasis by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma. Sci. Rep. 5: 15972.
Ziberna L., Martelanc M., Franko M., and Passamonti S. 2016. Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Sci. Rep. 6: 29240.

Information & Authors

Information

Published In

cover image Biochemistry and Cell Biology
Biochemistry and Cell Biology
Volume 98Number 6December 2020
Pages: 669 - 675

History

Received: 28 October 2019
Accepted: 7 April 2020
Published online: 5 June 2020

Permissions

Request permissions for this article.

Key Words

  1. long noncoding RNA
  2. MALAT1
  3. human umbilical vein endothelial cells
  4. high glucose
  5. NF-κB signaling pathway
  6. apoptosis
  7. inflammation

Mots-clés

  1. long ARN non codant
  2. MALAT1
  3. cellules endothéliales de cordon ombilical
  4. forte teneur en glucose
  5. voie de signalisation du NF-κB
  6. apoptose
  7. inflammation

Authors

Affiliations

Department of Endocrinology, Pingxiang People’s Hospital, Pingxiang 337000, P.R. China.
Ya-Wei Zhang
Department of Endocrinology, Pingxiang People’s Hospital, Pingxiang 337000, P.R. China.
Xiao-Qing Su
Department of Endocrinology, Pingxiang People’s Hospital, Pingxiang 337000, P.R. China.
Hai-Bo Gao
Department of Endocrinology, Pingxiang People’s Hospital, Pingxiang 337000, P.R. China.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Ascorbic acid protects retinal pigment epithelial cells from high glucose by inhibiting the NF‐κB signal pathway through MALAT1 / IGF2BP3 axis
2. Roles of long noncoding RNAs and small extracellular vesicle‐long noncoding RNAs in type 2 diabetes
3. The expression patterns of MALAT-1, NEAT-1, THRIL, and miR-155-5p in the acute to the post-acute phase of COVID-19 disease
4. Long non‑coding RNA MALAT1 is involved in retinal pigment epithelial cell damage caused by high glucose treatment

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Biochemistry and Cell Biology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media