Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Abstract

The oral cavity is a non-uniform, extraordinary environment characterized by mucosal, epithelial, abiotic surfaces and secretions as saliva. Aerobic and anaerobic commensal and pathogenic microorganisms colonize the tongue, teeth, jowl, gingiva, and periodontium. Commensals exert an important role in host defenses, while pathogenic microorganisms can nullify this protective function causing oral and systemic diseases. Every day, 750–1000 mL of saliva, containing several host defense constituents including lactoferrin (Lf), are secreted and swallowed. Lf is a multifunctional iron-chelating cationic glycoprotein of innate immunity. Depending on, or regardless of its iron-binding ability, Lf exerts bacteriostatic, bactericidal, antibiofilm, antioxidant, antiadhesive, anti-invasive, and anti-inflammatory activities. Here, we report the protective role of Lf in different oral pathologies, such as xerostomia, halitosis, alveolar or maxillary bone damage, gingivitis, periodontitis, and black stain. Unlike antibiotic therapy, which is ineffective against bacteria that are within a biofilm, adherent, or intracellular, the topical administration of Lf, through its simultaneous activity against microbial replication, biofilms, adhesion, and invasiveness, as well as inflammation, has been proven to be efficient in the treatment of all known oral pathologies without any adverse effects.

Résumé

La cavité buccale constitue un environnement non uniforme et extraordinaire caractérisé par des surfaces muqueuses, épithéliales, abiotiques et des sécrétions comme la salive. Les microorganismes aérobies et anaérobies commensaux et pathogènes colonisent la langue, les dents, l’intérieur des joues, les gencives et le parodonte. Les commensaux jouent un rôle important dans les défenses de l’hôte alors que les microorganismes pathogènes peuvent annuler cette fonction protectrice, provoquant des maladies bucco-dentaires et systémiques. Chaque jour, 750–1000 ml de salive contenant plusieurs constituants de la défense de l’hôte, dont la lactoferrine (Lf), sont sécrétés et avalés. La Lf est une glycoprotéine cationique multifonctionnelle de l’immunité innée chélatrice de fer. En fonction ou indépendamment de sa capacité de lier le fer, la Lf exerce des activités bactériostatiques, bactéricides, antibiofilm, antioxydantes, antiadhésives, anti-invasives et anti-inflammatoires. Les auteurs rapportent ici le rôle protecteur de la Lf dans différentes pathologies buccales telles que la xérostomie, l’halitose, les lésions osseuses alvéolaires ou maxillaires, la gingivite, la parodontite et la coloration noire. Contrairement à l’antibiothérapie, qui est inefficace contre les bactéries d’un biofilm, les bactéries adhérentes et celles ayant un mode de vie intracellulaire, l’administration topique de Lf, grâce à son activité simultanée contre la multiplication microbienne, le biofilm, l’adhérence, l’invasion de même que l’inflammation, s’est avérée efficace dans le traitement de toutes ces pathologies buccales sans aucun effet indésirable. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Abusleme L., Dupuy A.K., Dutzan N., Silva N., Burleson J.A., Strausbaugh L.D., et al. 2013. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7(5): 1016–1025.
Albandar J.M., Susin C., and Hughes F.J. 2018. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: Case definitions and diagnostic considerations. J. Clin. Periodontol. 45(Suppl. 20): S171–S189.
Al-Kamel A., Baraniya D., Al-Hajj W.A., Halboub E., Abdulrab S., Chen T., and Al-Hebshi N.N. 2019. Subgingival microbiome of experimental gingivitis: shifts associated with the use of chlorhexidine and N-acetyl cysteine mouthwashes. J. Oral Microbiol. 11(1): 1608141.
Al-Maweri S.A., Nassani M.Z., Alaizari N., Kalakonda B., Al-Shamiri H.M., Alhajj M.N., et al. 2020. Efficacy of aloe vera mouthwash versus chlorhexidine on plaque and gingivitis: A systematic review. Int. J. Dent. Hyg. 18(1): 44–51.
Appelmelk B.J., An Y.Q., Geerts M., Thijs B.G., de Boer H.A., MacLaren D.M., et al. 1994. Lactoferrin is a lipid A-binding protein. Infect. Immun. 62(6): 2628–2632.
Arnold R.R., Russell J.E., Champion W.J., and Gauthier J.J. 1981. Bactericidal activity of human lactoferrin: influence of physical conditions and metabolic state of the target microorganism. Infect. Immun. 32(2): 655–660.
Baeza M., Morales A., Cisterna C., Cavalla F., Jara G., Isamitt Y., et al. 2020. Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis. J. Appl. Oral Sci. 28: e20190248.
Bandara H.M.H.N., Panduwawala C.P., and Samaranayake L.P. 2019. Biodiversity of the human oral mycobiome in health and disease. Oral Dis. 25(2): 363–371.
Bartold, P.M., and Narayanan, A.S. 2006. Molecular and cell biology of healthy and diseased periodontal tissues. Periodontology 2000, 40: 29–49.
Berlutti F., Ajello M., Bosso P., Morea C., Petrucca A., Antonini G., and Valenti P. 2004. Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans. Biometals, 17(3): 271–278.
Berlutti F., Schippa S., Morea C., Sarli S., Perfetto B., Donnarumma G., and Valenti P. 2006. Lactoferrin downregulates pro-inflammatory cytokines upexpressed in intestinal epithelial cells infected with invasive or noninvasive Escherichia coli strains. Biochem. Cell Biol. 84(3): 351–357.
Berlutti F., Catizone A., Ricci G., Frioni A., Natalizi T., Valenti P., and Polimeni A. 2010. Streptococcus mutans and Streptococcus sobrinus are able to adhere and invade human gingival fibroblast cell line. Int. J. Immunopathol. Pharmacol. 23(4): 1253–1260.
Berlutti F., Pilloni A., Pietropaoli M., Polimeni A., and Valenti P. 2011. Lactoferrin and oral diseases: current status and perspective in periodontitis. Ann. Stomatol. 2(3–4): 10–18.
Bocanegra-Pérez S., Vicente-Barrero M., Knezevic M., Castellano-Navarro J.M., Rodríguez-Bocanegra E., Rodríguez-Millares J., et al. 2012. Use of platelet-rich plasma in the treatment of bisphosphonate-related osteonecrosis of the jaw. Int. J. Oral Maxillofac. Surg. 41(11): 1410–1415.
Bonaccorsi di Patti M.C., Cutone A., Polticelli F., Rosa L., Lepanto M.S., Valenti P., and Musci G. 2018. The ferroportin-ceruloplasmin system and the mammalian iron homeostasis machine: regulatory pathways and the role of lactoferrin. BioMetals, 31(3): 399–414.
Brandtzaeg P. 1973. Two types of IgA immunocytes in man. Nat. New Biol. 243(126): 142–143.
Calvani F., Cutone A., Lepanto M.S., Rosa L., Valentini V., and Valenti P. 2018. Efficacy of bovine lactoferrin in the post-surgical treatment of patients suffering from bisphosphonate-related osteonecrosis of the jaws: an open-label study. Biometals, 31(3): 445–455.
Chambers M.S., Tomsett K.L., Artopoulou I.I., Garden A.S., El-Naggar A.K., Martin J.W., and Keene H.J. 2008. Salivary flow rates measured during radiation therapy in head and neck cancer patients: a pilot study assessing salivary sediment formation. J. Prosthet. Dent. 100(2): 142–146.
Chorzewski M., Orywal K., Sierpinska T., and Golebiewska M. 2017. Salivary protective factors in patients suffering from decompensated type 2 diabetes. Adv. Med. Sci. 62(2): 211–215.
Ciancio S.G. 1986. Current status of indices of gingivitis. J. Clin. Periodontol. 13(5): 375–378.
Cornish J., Palmano K., Callon K.E., Watson M., Lin J.M., Valenti P., et al. 2006. Lactoferrin and bone; structure-activity relationships. Biochem. Cell Biol. 84(3): 297–302.
Cutone A., Lepanto M.S., Rosa L., Scotti M.J., Rossi A., Ranucci S., et al. 2019. Aerosolized bovine lactoferrin counteracts infection, inflammation and iron dysbalance in a cystic fibrosis mouse model of Pseudomonas aeruginosa chronic lung infection. Int. J. Mol. Sci. 20(9): E2128.
de Araújo Nobre M., Salvado F., Nogueira P., Rocha E., Ilg P., and Maló P. 2019. A peri-implant disease risk score for patients with dental implants: validation and the influence of the interval between maintenance appointments. J. Clin. Med. 8(2): E252.
Deo V. and Bhongade M.L. 2010. Pathogenesis of periodontitis: role of cytokines in host response. Dent. Today, 29(9): 60–62.
Dewhirst F.E. 2016. The oral microbiome: critical for understanding oral health and disease. J. Calif. Dent. Assoc. 44(7): 409–410.
Diaz P.I., Hoare A., and Hong B.Y. 2016. Subgingival microbiome shifts and community dynamics in periodontal diseases. J. Calif. Dent. Assoc. 44(7): 421–435.
DiGiulio D.B., Callahan B.J., McMurdie P.J., Costello E.K., Lyell D.J., Robaczewska A., et al. 2015. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad Sci. USA. 112(35): 11060–11065.
Ellison R.T. 3rd, LaForce F.M., Giehl T.J., Boose D.S., and Dunn B.E. 1990. Lactoferrin and transferrin damage of the gram-negative outer membrane is modulated by Ca2+ and Mg2+. J. Gen. Microbiol. 136(7): 1437–1446.
Ferreira S.M., Gonçalves L.S., Torres S.R., Nogueira S.A., and Meiller T.F. 2015. Lactoferrin levels in gingival crevicular fluid and saliva of HIV-infected patients with chronic periodontitis. J. Investig. Clin. Dent. 6(1): 16–24.
Figuero E., Nóbrega D.F., García-Gargallo M., Tenuta L.M., Herrera D., and Carvalho J.C. 2017. Mechanical and chemical plaque control in the simultaneous management of gingivitis and caries: a systematic review. J. Clin. Periodontol. 44(Suppl 18): S116–S134.
Freiberger J.J., Padilla-Burgos R., McGraw T., Suliman H.B., Kraft K.H., Stolp B.W., et al. 2012. What is the role of hyperbaric oxygen in the management of bisphosphonate-related osteonecrosis of the jaw: a randomized controlled trial of hyperbaric oxygen as an adjunct to surgery and antibiotics. J. Oral Maxillofac. Surg. 70(7): 1573–1583.
Frioni A., Conte M.P., Cutone A., Longhi C., Musci G., di Patti M.C., et al. 2014. Lactoferrin differently modulates the inflammatory response in epithelial models mimicking human inflammatory and infectious diseases. Biometals, 27(5): 843–856.
Gil-Montoya J.A., Guardia-López I., and González-Moles M.A. 2008. Evaluation of the clinical efficacy of a mouthwash and oral gel containing the antimicrobial proteins lactoperoxidase, lysozyme and lactoferrin in elderly patients with dry mouth–a pilot study. Gerodontology, 25(1): 3–9.
Görmez U., Kürkcü M., E Benlidayi M., Ulubayram K., Sertdemir Y., and Dağlioğlu K. 2015. Effects of bovine lactoferrin in surgically created bone defects on bone regeneration around implants. J. Oral Sci. 57(1): 7–15.
Groenink J., Walgreen-Weterings E., Nazmi K., Bolscher J.G., Veerman E.C., van Winkelhoff A.J., and Nieuw Amerongen A.V. 1999. Salivary lactoferrin and low-Mr mucin MG2 in Actinobacillus actinomycetemcomitans-associated periodontitis. J. Clin. Periodontol. 26(5): 269–275.
Hajishengallis G. and Lambris J.D. 2012. Complement and dysbiosis in periodontal disease. Immunobiology, 217(11): 1111–1116.
Hajishengallis G., Liang S., Payne M.A., Hashim A., Jotwani R., Eskan M.A., et al. 2011. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe, 10(5): 497–506.
Hart, T.C., and Kornman, K.S. 1997. Genetic factors in the pathogenesis of periodontitis. Periodontology 2000, 14: 202–215.
He C.S., Tsai M.L., Ko M.H., Chang C.K., and Fang S.H. 2010. Relationships among salivary immunoglobulin A, lactoferrin and cortisol in basketball players during a basketball season. Eur. J. Appl. Physiol. 110(5): 989–995.
Hinson A.M., Siegel E.R., and Stack B.C. Jr 2015. Temporal correlation between bisphosphonate termination and symptom resolution in osteonecrosis of the jaw: a pooled case report analysis. J. Oral Maxillofac. Surg. 73(1): 53–62.
Holt, S.C., and Ebersole, J.L. 2005. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontology 2000, 38: 72–122.
James, P., Worthington, H.V., Parnell, C., Harding, M., Lamont, T., Cheung, A. et al. 2017. Chlorhexidine mouthrinse as an adjunctive treatment for gingival health. Cochrane Database Syst. Rev. 3: CD008676.
Johnson, T.M., Worthington, H.V., Clarkson, J.E., Poklepovic Pericic, T., Sambunjak, D., and Imai, P. 2015. Mechanical interdental cleaning for preventing and controlling periodontal diseases and dental caries. Cochrane Database Syst. Rev. (12) CD012018.
Katagiri T. and Takahashi N. 2002. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 8(3): 147–159.
Kilian M., Chapple I.L., Hannig M., Marsh P.D., Meuric V., Pedersen A.M., et al. 2016. The oral microbiome — an update for oral healthcare professionals. Br. Dent. J. 221(10): 657–666.
Kobus A., Kierklo A., Zalewska A., Kuźmiuk A., Szajda S.D., Ławicki S., and Bagińska J. 2017. Unstimulated salivary flow, pH, proteins and oral health in patients with Juvenile Idiopathic Arthritis. BMC Oral Health, 17(1): 94.
Kruzel M.L., Zimecki M., and Actor J.K. 2017. Lactoferrin in a Context of Inflammation-Induced Pathology. Front. Immunol. 8: 1438.
Kurgan, S., and Kantarci, A. 2018. Molecular basis for immunohistochemical and inflammatory changes during progression of gingivitis to periodontitis. Periodontology 2000, 76(1): 51–67.
Lamont R.J., Koo H., and Hajishengallis G. 2018. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 16(12): 745–759.
Lepanto M.S., Rosa L., Cutone A., Scotti M.J., Conte A.L., Marazzato M., et al. 2019a. Bovine lactoferrin pre-treatment induces intracellular killing of AIEC LF82 and reduces bacteria-induced DNA damage in differentiated human enterocytes. Int. J. Mol. Sci. 20(22): E5666.
Lepanto M.S., Rosa L., Paesano R., Valenti P., and Cutone A. 2019b. Lactoferrin in aseptic and septic inflammation. Molecules, 24(7): E1323.
Loe H. 1967. The gingival index, the plaque index and the retention index systems. J. Periodontol. 38(6): 610–616.
Loesche, W.J., and Kazor, C. 2002. Microbiology and treatment of halitosis. Periodontology 2000, 28: 256–279.
Masci J.R. 2000. Complete response of severe, refractory oral candidiasis to mouthwash containing lactoferrin and lysozyme. AIDS. 14: 2403–2404.
Masson P.L., Heremans J.F., and Dive C. 1966. An iron-binding protein common to many external secretions. Clin. Chim. Acta, 14: 735–739.
Millsop J.W., Wang E.A., and Fazel N. 2017. Etiology, evaluation, and management of xerostomia. Clin. Dermatol. 35(5): 468–476.
Mizuhashi F., Koide K., Toya S., Takahashi M., Mizuhashi R., and Shimomura H. 2015. Levels of the antimicrobial proteins lactoferrin and chromogranin in the saliva of individuals with oral dryness. J. Prosthet. Dent. 113(1): 35–38.
Morita Y., Ishikawa K., Nakano M., Wakabayashi H., Yamauchi K., Abe F., et al. 2017. Effects of lactoferrin and lactoperoxidase-containing food on the oral hygiene status of older individuals: A randomized, double blinded, placebo-controlled clinical trial. Geriatr. Gerontol. Int. 17(5): 714–721.
Mulic A., Tveit A.B., Songe D., Sivertsen H., and Skaare A.B. 2012. Dental erosive wear and salivary flow rate in physically active young adults. BMC Oral Health, 12: 8.
Murakami S., Mealey B.L., Mariotti A., and Chapple I.L.C. 2018. Dental plaque-induced gingival conditions. J. Periodontol. 89(Suppl 1): S17–S27.
Nagano-Takebe F., Miyakawa H., Nakazawa F., and Endo K. 2014. Inhibition of initial bacterial adhesion on titanium surfaces by lactoferrin coating. Biointerphases, 9(2): 029006.
Nakano M., Shimizu E., Wakabayashi H., Yamauchi K., and Abe F. 2016. A randomized, double-blind, crossover, placebo-controlled clinical trial to assess effects of the single ingestion of a tablet containing lactoferrin, lactoperoxidase, and glucose oxidase on oral malodor. BMC Oral Health, 16: 37.
Nakano M., Yoshida A., Wakabayashi H., Tanaka M., Yamauchi K., Abe F., and Masuda Y. 2019. Effect of tablets containing lactoferrin and lactoperoxidase on gingival health in adults: A randomized, double-blind, placebo-controlled clinical trial. J. Periodontal. Res. 54(6): 702–708.
Nakano Y., Yoshimura M., and Koga T. 2002. Correlation between oral malodor and periodontal bacteria. Microbes Infect. 4: 679–683.
Nazir M.A. 2017. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. 11(2): 72–80.
Needleman I., Ashley P., Petrie A., Fortune F., Turner W., Jones J., et al. 2013. Oral health and impact on performance of athletes participating in the London 2012 Olympic Games: a cross-sectional study. Br. J. Sports Med. 47(16): 1054–1058.
Osso D. and Kanani N. 2013. Antiseptic mouth rinses: an update on comparative effectiveness, risks and recommendations. J. Dent. Hyg. 87: 10–18.
Papacosta E. and Nassis G.P. 2011. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J. Sci. Med. Sport, 14(5): 424–434.
Pautke C., Bauer F., Otto S., Tischer T., Steiner T., Weitz J., et al. 2011. Fluorescence-guided bone resection in bisphosphonate-related osteonecrosis of the jaws: first clinical results of a prospective pilot study. J. Oral Maxillofac. Surg. 69(1): 84–91.
Pedersen L.A.M. and Belstrøm D. 2019. The role of natural salivary defences in maintaining a healthy oral microbiota. J. Dent. 80(Suppl. 1): S3–S12.
Petschow B.W., Talbott R.D., and Batema R.P. 1999. Ability of lactoferrin to promote the growth of Bifidobacterium spp. in vitro is independent of receptor binding capacity and iron saturation level. J. Med. Microbiol. 48(6): 541–549.
Porter S.R., Scully C., and Hegarty A.M. 2004. An update of the etiology and management of xerostomia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 97(1): 28–46.
Raja Sivamani K., Garcia M.S., and Isseroff R.R. 2007. Wound reepithelialization: modulating keratinocyte migration in wound healing. Front. Biosci. 12: 2849–2868.
Razali M, Palmer R.M., Coward P., and Wilson R.F. 2005. A retrospective study of periodontal disease severity in smokers and non-smokers. Br. Dent. J. 198(8): 495–498.
Rocha Dde M., Zenóbio E.G., Van Dyke T., Silva K.S., Costa F.O., and Soares R.V. 2012. Differential expression of salivary glycoproteins in aggressive and chronic periodontitis. J. Appl. Oral Sci. 20(2): 180–185.
Rosa L., Cutone A., Lepanto M.S., Paesano R., and Valenti P. 2017. Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. Int. J. Mol. Sci. 18(9): E1985.
Rosa L., Cutone A., Lepanto M.S., Scotti M.J., Conte M.P., Paesano R., and Valenti P. 2018. Physico-chemical properties influence the functions and efficacy of commercial bovine lactoferrins. Biometals, 31(3): 301–312.
Safiaghdam H., Oveissi V., Bahramsoltani R., Farzaei M.H., and Rahimi R. 2018. Medicinal plants for gingivitis: a review of clinical trials. Iran. J. Basic Med. Sci. 21(10): 978–991.
Sakaue Y., Takenaka S., Ohsumi T., Domon H., Terao Y., and Noiri Y. 2018. The effect of chlorhexidine on dental calculus formation: an in vitro study. BMC Oral Health, 18(1): 52.
Sangermano R., Pernarella S., Straker M., Lepanto M.S., Rosa L., Cutone A., et al. 2019. The treatment of black stain associated with of iron metabolism disorders with lactoferrin: a literature search and two case studies. Clin. Ter. 170(5): e373–e381.
Schincaglia G.P., Hong B.Y., Rosania A., Barasz J., Thompson A., Sobue T., et al. 2017. Clinical, immune, and microbiome traits of gingivitis and peri-implant mucositis. J. Dent. Res. 96(1): 47–55.
Sessa R., Di Pietro M., Filardo S., Bressan A., Rosa L., Cutone A., et al. 2017a. Effect of bovine lactoferrin on Chlamydia trachomatis infection and inflammation. Biochem. Cell Biol. 95(1): 34–40.
Sessa R., Di Pietro M., Filardo S., Bressan A., Mastromarino P., Biasucci A.V., et al. 2017b. Lactobacilli-lactoferrin interplay in Chlamydia trachomatis infection. Pathog. Dis. 75(5).
Shin K., Yaegaki K., Murata T., Ii H., Tanaka T., Aoyama I., et al. 2011. Effects of a composition containing lactoferrin and lactoperoxidase on oral malodor and salivary bacteria: a randomized, double-blind, crossover, placebo-controlled clinical trial. Clin. Oral Investig. 15(4): 485–493.
Silva M.F., Leite F.R.M., Ferreira L.B., Pola N.M., Scannapieco F.A., Demarco F.F., and Nascimento G.G. 2018. Estimated prevalence of halitosis: a systematic review and meta-regression analysis. Clin. Oral Investig. 22(1): 47–55.
Singh P.K., Parsek M.R., Greenberg E.P., and Welsh M.J. 2002. A component of innate immunity prevents bacterial biofilm development. Nature, 417: 552–555.
Siqueira F.M., Cota L.O., Costa J.E., Haddad J.P., Lana A.M., and Costa F.O. 2007. Intrauterine growth restriction, low birth weight, and preterm birth: adverse pregnancy outcomes and their association with maternal periodontitis. J. Periodontol. 78(12): 2266–2276.
Slots, J. 2017. Periodontitis: facts, fallacies and the future. Periodontology 2000, 75(1): 7–23.
Socransky, S.S., and Haffajee, A.D. 2005. Periodontal microbial ecology. Periodontology 2000, 38: 135–187.
Sreebny L.M. 2000. Saliva in health and disease: an appraisal and update. Int. Dent. J. 50(3): 140–161.
Susin, C., Haas, A.N., and Albandar, J.M. 2014. Epidemiology and demographics of aggressive periodontitis. Periodontology 2000, 65(1): 27–45.
Takayama Y. and Aoki R. 2012. Roles of lactoferrin on skin wound healing. Biochem. Cell Biol. 90: 497–503.
Takenaka S., Ohsumi T., and Noiri Y. 2019. Evidence-based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. Jpn. Dent. Sci. Rev. 55(1): 33–40.
Tonzetich J. 1977. Production and origin of oral malodor: a review of mechanisms and methods of analysis. J Periodontal. 48: 13–20.
Trombelli L., Farina R., Silva C.O., and Tatakis D.N. 2018. Plaque-induced gingivitis: Case definition and diagnostic considerations. J. Clin. Periodontol. 45(Suppl. 20): S44–S67.
USFDA. 2014. GRN 000465 [Cow’s milk-derived lactoferrin, Tokyo, Japan: Morinaga Milk Industry Co., Ltd.]. U.S. Food and Drug Administration, Center for Food Safety & Applied Nutrition (CFSAN), Office of Food Additive Safety, Silver Spring, Md. Available at: http://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=465 (accessed on 13 October 2020).
Valenti P. and Antonini G. 2005. Lactoferrin: an important host defence against microbial and viral attack. Cell. Mol. Life Sci. 62(22): 2576–2587.
Valenti P., Frioni A., Rossi A., Ranucci S., De Fino I., Cutone A., et al. 2017. Aerosolized bovine lactoferrin reduces neutrophils and pro-inflammatory cytokines in mouse models of Pseudomonas aeruginosa lung infections. Biochem. Cell Biol. 95(1): 41–47.
Valkenburg, C., Van der Weijden, F.A., and Slot, D.E. 2019. Plaque control and reduction of gingivitis: The evidence for dentifrices. Periodontology 2000, 79(1): 221–232.
Van Strydonck D.A., Slot D.E., Van der Velden U., and Van der Weijden F. 2012. Effect of a chlorhexidine mouth rinse on plaque, gingival inflammation and staining in gingivitis patients: a systematic review. J. Clin. Periodontol. 39(11): 1042–1055.
van‘t Hof, W., Veerman, E.C.I., Nieuw Amerongen, A.V., and Ligtenberg, A.J.M. 2014. Antimicrobial defense systems in saliva. In Saliva: secretion and functions. Edited by A.J.M. Ligtenberg and E.C.I. Veerman. Monogr. Oral Sci. Karger, Basel, Switzerland. Vol. 24, pp. 40–51.
Velliyagounder K., Bahdila D., Pawar S., and Fine D.H. 2019. Role of lactoferrin and lactoferrin-derived peptides in oral and maxillofacial diseases. Oral Dis. 25(3): 652–669.
Vescovi P., Giovannacci I., Merigo E., Meleti M., Manfredi M., Fornaini C., and Nammour S. 2015. Tooth extractions in high-risk patients under bisphosphonate therapy and previously affected with osteonecrosis of the jaws: surgical protocol supported by low-level laser therapy. J. Craniofac. Surg. 26(3): 696–699.
Wakabayashi H., Yamauchi K., Kobayashi T., Yaeshima T., Iwatsuki K., and Yoshie H. 2009. Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia. Antimicrob. Agents Chemother. 53(8): 3308–3316.
Wakabayashi H., Kondo I., Kobayashi T., Yamauchi K., Toida T., Iwatsuki K., and Yoshie H. 2010. Periodontitis, periodontopathic bacteria and lactoferrin. Biometals, 23(3): 419–424.
Yamano E., Miyauchi M., Furusyo H., Kawazoe A., Ishikado A., Makino T., et al. 2010. Inhibitory effects of orally administrated liposomal bovine lactoferrin on the LPS-induced osteoclastogenesis. Lab. Invest. 90(8): 1236–1246.
Yeh C.K., Dodds M.W., Zuo P., and Johnson D.A. 1997. A population-based study of salivary lysozyme concentrations and candidal counts. Arch. Oral Biol. 42: 25–31.
Zhang F., Li Y., Xun Z., Zhang Q., Liu H., and Chen F. 2017. A preliminary study on the relationship between iron and black extrinsic tooth stain in children. Lett. Appl. Microbiol. 64(6): 424–429.
Zhang Y., Wang X., Li H., Ni C., Du Z., and Yan F. 2018. Human oral microbiota and its modulation for oral health. Biomed. Pharmacother. 99: 883–893.
Żyła T., Kawala B., Antoszewska-Smith J., and Kawala M. 2015. Black stain and dental caries: a review of the literature. Biomed. Res. Int. 2015: 469392.

Information & Authors

Information

Published In

cover image Biochemistry and Cell Biology
Biochemistry and Cell Biology
Volume 99Number 1February 2021
Pages: 81 - 90

History

Received: 11 February 2020
Accepted: 19 March 2020
Accepted manuscript online: 26 March 2020
Version of record online: 26 March 2020

Notes

This Review is one of a selection of papers from the 14th International Conference on Lactoferrin, held in Lima, Peru, 4–8 November 2019.

Permissions

Request permissions for this article.

Key Words

  1. lactoferrin
  2. inflammation
  3. gingivitis
  4. periodontitis
  5. black stain

Mots-clés

  1. lactoferrine
  2. inflammation
  3. gingivite
  4. parodontite
  5. coloration noire

Authors

Affiliations

Luigi Rosa
Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy.
Maria Stefania Lepanto
Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy.
Antimo Cutone
Department of Biosciences and Territory, University of Molise, Pesche, Italy.
Giusi Ianiro
Department of Biosciences and Territory, University of Molise, Pesche, Italy.
Stefania Pernarella
Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy.
Riccardo Sangermano
Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy.
Giovanni Musci
Department of Biosciences and Territory, University of Molise, Pesche, Italy.
Livia Ottolenghi
Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy.
Piera Valenti [email protected]
Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Lactoferrin improves symptoms of dextran sulfate sodium-induced colitis in mice through modulation of cellular senescence
2. To Boost or to Reset: The Role of Lactoferrin in Energy Metabolism
3. Impact of breastfeeding and other early-life factors on the development of the oral microbiome
4. The role of microbiome-host interactions in the development of Alzheimer´s disease
5. Lactoferrin and the development of salivary stones: a pilot study
6. Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review
7. Effect of Non-Surgical Periodontal Therapy on Clinical Parameters of Periodontitis, Oral Candida spp. Count and Lactoferrin and Histatin Expression in Saliva and Gingival Crevicular Fluid of HIV-Infected Patients
8. Oral Cavity Calprotectin and Lactoferrin Levels in Relation to Radiotherapy
9. The Lactoferrin Phenomenon—A Miracle Molecule
10. Lactoferrin as Immune-Enhancement Strategy for SARS-CoV-2 Infection in Alzheimer’s Disease Patients
11. The effect of lactoferrin in aging: role and potential
12. Protein Cargo of Salivary Small Extracellular Vesicles as Potential Functional Signature of Oral Squamous Cell Carcinoma
13. IN VITRO COMPARISON OF THE ANTIMICROBIAL EFFECTS OF DIFFERENT ROOT CANAL MEDICAMENTS ON ENTEROCOCCUS FAECALIS AND CANDIDA ALBICANS
14. Antibiofilm activity of lactoferrin-derived synthetic peptides against Pseudomonas aeruginosa PAO11
15. Lactoferrin extends its reach into South America1

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Biochemistry and Cell Biology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media