Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Simulating the effect of climate change on performance of a monolayer cover combined with an elevated water table placed on acid-generating mine tailings

Publication: Canadian Geotechnical Journal
16 July 2021


Several reclamation approaches were developed in the last decades to control acid mine drainage from tailings storage facilities, including the monolayer cover combined with an elevated water table. Its performance is dependent on water table elevation and tailings saturation and is directly affected by climatic conditions; therefore, climate change needs to be taken into account to design resilient reclamation systems. The objective of this research was to evaluate three approaches to simulate climate change and compare the impact on reclamation performance up to year 2100. Numerical simulations were calibrated using experimental field data, and future weather conditions were established based on three climate change scenarios adapted for local conditions. Results showed that the projected impact of climate change varied depending on the approach used. Simpler and more conservative approaches indicated that reclamation would eventually fail following an increase of droughts during future summers. However, 80 year simulations showed that reclamation failures (evaluated as oxygen flux) could be limited to a few isolated summers and that a well-designed monolayer cover with elevated water table appeared to remain efficient in the long term. Overall, the probability to exceed the oxygen flux target of 1 mol/m2/year did not exceed 2% for the simulated conditions.


Au cours des dernières décennies, plusieurs approches de remise en état ont été élaborées pour contrôler le drainage minier acide des installations de stockage des résidus, notamment la couverture monocouche combinée à une nappe phréatique élevée. Ses performances dépendent de l’élévation de la nappe phréatique et de la saturation des résidus, et sont directement affectées par les conditions climatiques. Il faut donc tenir compte du changement climatique pour concevoir des systèmes de remise en état résilients. L’objectif de cette recherche était d’évaluer trois approches pour simuler le changement climatique et de comparer l’impact sur les performances de remise en état jusqu’en 2100. Les simulations numériques ont été calibrées à l’aide de données expérimentales de terrain et les conditions météorologiques futures ont été établies sur la base de trois scénarios de changement climatique adaptés aux conditions locales. Les résultats ont montré que l’impact prévu du changement climatique varie selon l’approche utilisée. Des approches plus simples et plus conservatrices indiquaient que la remise en état échouerait finalement à la suite d’une augmentation des sécheresses au cours des étés futurs. En revanche, des simulations sur 80 ans ont montré que les échecs de la remise en état (évalués par le flux d’oxygène) pouvaient être limités à quelques étés isolés et qu’une couverture monocouche bien conçue avec une nappe phréatique élevée semblait rester efficace à long terme. Globalement, la probabilité de dépasser l’objectif de flux d’oxygène de 1 mol/m2/an n’a pas dépassé 2 % pour les conditions simulées. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.


Aachib M., Mbonimpa M., and Aubertin M. 2004. Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water, Air, and Soil Pollution, 156(1): 163–193.
ASTM D2487. 2011. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken, Pa.
ASTM D5856. 2015. Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter. ASTM International, West Conshohocken, Pa.
ASTM D6836. 2016. Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge. ASTM International, West Conshohocken, Pa.
Aubertin, M., Bussière, B., and Bernier, L. 2002. Environnement et gestion des rejets miniers. Presses Polytechnique Internationales.
Aubertin, M., Bussière, B., Pabst, T., James, M., and Mbonimpa, M. 2016. Review of the reclamation techniques for acid-generating mine wastes upon closure of disposal sites. In Geo-Chicago 2016, Chicago, Ill., 14–18 August 2016. pp. 343–358.
Awoh A.S., Mbonimpa M., and Bussière B. 2013. Field study of the chemical and physical stability of highly sulphide-rich tailings stored under a shallow water cover. Mine Water and the Environment, 32(1): 42–55.
Bashir R., Ahmad F., and Beddoe R. 2020. Effect of climate change on a monolithic desulphurized tailings cover. Water, 12: 2645–2674.
Benzaazoua M., Bussière B., Kongolo M., McLaughlin J., and Marion P. 2000. Environmental desulphurization of four Canadian mine tailings using froth flotation. International Journal of Mineral Processing, 60(1): 57–74.
Benzaazoua M., Bussière B., Demers I., Aubertin A., Fried E., and Blier B. 2008. Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: application to mine Doyon, Quebec, Canada. Minerals Engineering, 21(4): 330–340.
Blier, A., Demers, I., Gagnon, M., and Bois, D. 2012. Eliminating acid rock drainage (ARD) at mine Doyon — sustained operations allow for new possibilities. In Proceedings of the 9th International Conference on Acid Rock Drainage (ICARD 2012), Ottawa, Ont., 20–26 May 2012.
Blowes, D.W., Ptacek, C.J., Jambor, J.L., Weisener, C.G., Paktunc, D., Gould, W.D., and Johnson, D.B. 2014. The geochemistry of acid mine drainage. In Treatise on Geochemistry. 2nd ed. Vol. 11. Edited by H.D. Holland, and K.K. Turekian. pp. 131–190.
Bussière, B., Lelièvre, J., Ouellet, J., and Bois, D. 1995. Utilisation de résidus miniers désulfurés comme recouvrement pour prévenir le DMA: analyse technico-économique sur deux cas réels. In Proceedings of Sudbury’95, Conference on Mining and the Environment, Sudbury, Ont., 28 May–1 June 1995. Vol. 1. pp. 59–68.
Bussière B., Aubertin M., and Chapuis R.P. 2003. The behavior of inclined covers used as oxygen barriers. Canadian Geotechnical Journal, 40(3): 512–535.
Bussière B., Aubertin M., Mbonimpa M., Molson J.W., and Chapuis R.P. 2007. Field experimental cells to evaluate the hydrogeological behaviour of oxygen barriers made of silty materials. Canadian Geotechnical Journal, 44(3): 245–265.
Bussière, B., and Guittonny, M. 2020. Hard rock mine reclamation: from prediction to management of acid mine drainage. CRC Press, Boca Raton, Fla.
Collin M. and Rasmuson A. 1988. A comparison of gas diffusivity models for unsaturated porous media. Soil Science Society of America Journal, 52: 1559–1565.
Dagenais, A.M., Aubertin, M., Bussière, B., and Martin, V. 2005. Large scale applications of covers with capillary barrier effects to control the production of acid mine drainage. In Proceedings of Post-Mining 2005, Nancy, France, 16–17 November.
Dagenais, A.M., Aubertin, M., and Bussière, B. 2006. Parametric study on the water content profiles and oxidation rates in nearly saturated tailings above the water table. In Proceedings of the 7th International Conference on Acid Rock Drainage (ICARD), St. Louis, Mo., 26–30 March 2006. The American Society of Mining and Reclamation. pp. 405–420.
Demers I., Bussière B., Benzaazoua M., Mbonimpa M., and Blier A. 2008. Column test investigation on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage. Minerals Engineering, 21: 317–329.
Demers I., Bussière B., Mbonimpa M., and Benzaazoua M. 2009. Oxygen diffusion and consumption in low sulphide tailings covers. Canadian Geotechnical Journal, 46(4): 454–469.
Demers, I., Amara, H.S., Gasnier, M., and Bernard, J-P. 2017. Development of a sampling strategy for mine waste characterization. In Tailings and Mine Waste ’17, Banff, Canada, 5–9 November 2017.
Desjarlais, C., and Blondlot, A. 2010. Savoir s’adapter aux changements climatiques. Ouranos, Montreal, Que.
Dobchuk B., Nichol C., Wilson G.W., and Aubertin M. 2013. Evaluation of a single-layer desulphurized tailings cover. Canadian Geotechnical Journal, 50: 777–792.
Ethier, M.P., Bussière, B., Aubertin, M., Maqsoud, A., Demers, I., and Lacroix, R. 2013. In situ evaluation of the elevated water table technique combined with a monolayer cover on reactive tailings: monitoring strategy and preliminary results. In Proceedings of the 66th Canadian Geotechnical Conference and 11th Joint CGS/IAH-CNC Groundwater Conference, Montreal, Que., 29 September–3 October 2013.
Ethier, M.P., Bussière, B., Aubertin, M., Demers, I., Maqsoud, A., Dionne, J., and Roy, M. 2014. Results from a field investigation of the elevated water table technique combined with a monolayer cover on acid generating tailings. In Proceedings of the 67th Canadian Geotechnical Society Conference, GeoRegina 2014, Regina, Sask., 28 September–2 October 2014.
Ethier M.P., Bussière B., Aubertin M., Maqsoud A., Demers I., and Broda S. 2018. In situ evaluation of performance of reclamation measures implemented on abandoned reactive tailings disposal site. Canadian Geotechnical Journal, 55(12): 1742–1755.
Giorgi F., Jones C., and Asrar G.R. 2009. Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO), 58(3): 175.
Hotton G., Bussière B., Pabst T., Bresson É., and Roy P. 2020. Influence of climate change on the ability of a cover with capillary barrier effects to control acid generation. Hydrogeology Journal, 28: 763–779.
Lieber, E. 2019. Influence des facteurs climatiques sur la performance de la nappe phréatique surélevée combinée à un recouvrement monocouche. MA.Sc. thesis, Polytechnique Montréal, Montreal, Que.
Lindsay M.B.J., Moncur M.C., Bain J.G., Jambor J.L., Ptacek C.J., and Blowes D.W. 2015. Geochemical and mineralogical aspects of sulfide mine tailings. Applied Geochemistry, 57: 157–177.
Mbonimpa M., Aubertin M., Chapuis R.P., and Bussière B. 2002. Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotechnical and Geological Engineering, 20(3): 235–259.
Mearns, L., McGinnis, S., Korytina, D., Arritt, R., Biner, S., Bukovsky, M., et al. 2017. The NA-CORDEX dataset, version 1.0. NCAR Climate Data Gateway, Boulder, Colo.
MEND. 2001. MEND Manual volume 4: Prevention and Control. MEND Report 5.4.2, Canmet, Ottawa, Ont., Canada.
Monette, A. 2012. L’étude des changements appréhendés des précipitations extrêmes sur la province du Québec en utilisant un ensemble de multi-MRC. M.Sc. thesis, UQAM, Montreal, Que.
Moss R.H., Edmonds J.A., Hibbard K.A., Manning M.R., Rose S.K., Van Vuuren D.P., et al. 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747–756.
Mualem Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12: 513–522.
Nicholson R.V., Gillham R.W., Cherry J.A., and Reardon E.J. 1989. Reduction of acid generation in mine tailings through the use of moisture-retaining layers as oxygen barriers. Canadian Geotechnical Journal, 26(1): 1–8.
Nordstrom D.K., Blowes D.W., and Ptacek C.J. 2015. Hydrogeochemistry and microbiology of mine drainage: an update. Applied Geochemistry, 57: 3–16.
Orava, A.D., Tremblay, G.A., Tibble, A., and Nicholson, R. 1997. Prevention of acid rock drainage through the application of in-pit disposal and elevated water table concepts. In Proceedings of the 4th International Conference on Acid Rock Drainage (ICARD), Vancouver, BC, 31 May–6 June 1997. pp. 973–983.
Ouangrawa M., Molson J., Aubertin M., Bussière B., and Zagury G.J. 2009. Reactive transport modelling of mine tailings columns with capillarity-induced high water saturation for preventing sulfide oxidation. Applied Geochemistry, 24: 1312–1323.
Ouangrawa M., Aubertin M., Molson J., Bussière B., and Zagury G.J. 2010. Preventing acid mine drainage with an elevated water table: long-term column experiments and parameter analysis. Water, Air, & Soil Pollution, 213: 437–458.
Pabst T., Aubertin M., Bussière B., and Molson J. 2017a. Experimental and numerical evaluation of single-layer covers placed on acid-generating tailings. Geotechnical and Geological Engineering, 35: 1421–1438.
Pabst T., Molson J., Aubertin M., and Bussière B. 2017b. Reactive transport modelling of the hydro-geochemical behaviour of partially oxidized acid-generating mine tailings with a monolayer cover. Applied Geochemistry, 78: 219–233.
Pabst T., Bussière B., Aubertin M., and Molson J. 2018. Comparative performance of cover systems to prevent acid mine drainage from pre-oxidized tailings: a numerical hydro-geochemical assessment. Journal of Contaminant Hydrology, 214: 39–53.
Plummer D.A., Caya D., Frigon A., Côté H., Giguère M., Paquin D., et al. 2006. Climate and climate change over North America as simulated by the Canadian RCM. Journal of Climate, 19(13): 3112–3132.
Rey, N.J., Demers, I., Bussière, B., Mbonimpa, M., and Lortie, S. 2016. Field experiments to test the elevated water table concept combined with a desulfurized tailings cover layer. In Geo-Chicago 2016, Chicago, Ill., 14–18 August 2018.
Rey, N.J., Demers, I., Bussière, B., Mbonimpa, M., and Lortie, S. 2017. Laboratory and field study of oxygen flux and hydrogeological behaviour of monolayer covers made of low-sulfide tailings combined with an elevated water table placed over acid-generating mine tailings. In GeoOttawa 2017, Ottawa, Ont., 1–4 October 2017.
Rey N.J., Demers I., Bussière B., Mbonimpa M., and Gagnon M. 2020. A geochemical evaluation of a monolayer cover with an elevated water table for the reclamation of the Doyon–Westwood tailings ponds, Canada. Environmental Earth Sciences, 79(2): 58.
Romano C.G., Mayer K.U., Jones D.R., Ellerbroek D.A., and Blowes D.W. 2003. Effectiveness of various cover scenarios on the rate of sulfide oxidation of mine tailings. Journal of Hydrology, 271(1–4): 171–187.
Roy, P. 2015. Synthèse des changements climatiques pour le secteur minier. Ouranos, Montreal, Que.
SENES. 1996. Review of use of an elevated water table as a method to control and reduce acidic drainage from tailings. MEND Report 2.17.1. SENES Consultants Limited, Richmond Hill, Ont.
Sjoberg, B., Wilson, G.W., and Aubertin, M. 2001. Field and laboratory characterization of a desulphurized tailings cover system. In An Earth Odyssey: 54th Canadian Geotechnical Conference – Proceedings of the 2nd Joint IAH-CNC and CGS Groundwater Specialty Conference, Calgary, Alta., 16–19 September 2001.
Taylor K.E., Stouffer R.J., and Meehl G.A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485–498.
URSTM. 2017. Analyse de risques et de vulnérabilité liés aux changements climatiques pour le secteur minier québécois. Rapport final PU-2014-06-913.
van Genuchten M.T. 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892–898.
Wilson, G.W. 1990. Soil evaporative fluxes for geotechnical engineering problems. Doctoral thesis, Department of Civil Engineering, University of Saskatchewan, Saskatoon, Sask.
Wilson G.W., Fredlund D.G., and Barbour S.L. 1994. Coupled soil-atmosphere modeling for soil evaporation. Canadian Geotechnical Journal, 31(2): 151–161.
Yanful E.K. and Catalan L.J. 2002. Predicted and field-measured resuspension of flooded mine tailings. Journal of Environmental Engineering, ASCE, 128: 341–351.

Information & Authors


Published In

cover image Canadian Geotechnical Journal
Canadian Geotechnical Journal
Volume 59Number 4April 2022
Pages: 558 - 568


Received: 9 October 2020
Accepted: 26 May 2021
Accepted manuscript online: 16 July 2021
Version of record online: 16 July 2021


Request permissions for this article.

Key Words

  1. acid mine drainage
  2. mine site reclamation
  3. climate change
  4. elevated water table
  5. monolayer cover
  6. numerical simulations


  1. drainage minier acide
  2. remise en état des sites miniers
  3. changement climatique
  4. nappe phréatique élevée
  5. couverture monocouche
  6. simulations numériques



Elodie Lieber*
University of Québec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Quebec, Canada.
Research Institute of Mines and Environment (RIME), Rouyn-Noranda, Quebec, Canada.
Isabelle Demers [email protected]
University of Québec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Quebec, Canada.
Research Institute of Mines and Environment (RIME), Rouyn-Noranda, Quebec, Canada.
Thomas Pabst
Research Institute of Mines and Environment (RIME), Rouyn-Noranda, Quebec, Canada.
Polytechnique Montréal, Montréal, Quebec, Canada.
Émilie Bresson
University of Québec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Quebec, Canada.
Research Institute of Mines and Environment (RIME), Rouyn-Noranda, Quebec, Canada.


Present address: Ministère de l’énergie et des ressources naturelles, Val d’Or, Quebec, Canada.
Present address: Ouranos, Montréal, Quebec, Canada.
Thomas Pabst served as an Editorial Board Member at the time of manuscript review and acceptance; peer review and editorial decisions regarding this manuscript were handled by Paul Simms.

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Loss of soil organic matter in the mining landscape and its implication to climate change
2. Characterizing groundwater flow in a former uranium mine (Bertholène, France): Present status and future considerations
3. Valorisation of Partially Oxidized Tailings in a Cover System to Reclaim an Old Acid Generating Mine Site

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Canadian Geotechnical Journal

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media