Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Development and validation of a method to predict the soil thermal conductivity using thermal piezocone penetration testing (T-CPTU)

Publication: Canadian Geotechnical Journal
12 July 2021

Abstract

A new in situ thermal piezocone penetration test (T-CPTU) system is developed to determine the thermal properties of soil. It is expected to overcome most of the shortcomings observed in existing in situ test techniques. Based on Fourier's heat conduction equation and pore pressure dissipation theoretical equation, a method for calculating the thermal conductivity, namely the predicted temperature method, was proposed. The accuracy of the T-CPTU probe testing process and thermal conductivity calculation results were verified by numerical simulation, laboratory large-scale model tank tests, and thermal needle tests. Finally, the field data of T-CPTUs at three sites in Nanjing, China, were collected and compared with the laboratory thermal needle tests. The results indicated that the thermal conductivities obtained using T-CPTU were accurate and closer to those of laboratory thermal needle tests for most soils. The thermal conductivities of the undisturbed soil samples measured in the laboratory were lower than those obtained by T-CPTU.

Résumé

Un nouveau système d’essai de pénétration thermique in situ par piézocône (T-CPTU) est développé pour déterminer les propriétés thermiques du sol. Elle devrait permettre de surmonter la plupart des lacunes observées dans les techniques d’essai in situ existantes. Sur la base de l’équation de conduction thermique de Fourier et de l’équation théorique de dissipation de la pression des pores, une méthode de calcul de la conductivité thermique, à savoir la méthode de la température prédite, a été proposée. La précision du processus d’essai de la sonde T-CPTU et les résultats du calcul de la conductivité thermique ont été vérifiés par simulation numérique, par des essais en laboratoire sur des réservoirs modèles à grande échelle et par des essais par aiguille thermique. Enfin, les données de terrain du T-CPTU sur trois sites à Nanjing, en Chine, ont été collectées et comparées aux essais par aiguille thermique réalisés en laboratoire. Les résultats ont indiqué que les conductivités thermiques obtenues à l’aide du T-CPTU étaient précises et plus proches de celles des tests d’aiguille thermique en laboratoire pour la plupart des sols. Les conductivités thermiques des échantillons de sol non perturbés mesurées en laboratoire étaient inférieures à celles obtenues par T-CPTU. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Abuel-Naga H.M., Bergado D., and Bouazza A. 2008. Thermal conductivity evolution of saturated clay under consolidation process. International Journal of Geomechanics, 8(2): 114–122.
Akrouch G.A., Briaud J.-L., Sanchez M., and Yilmaz R. 2016. Thermal cone test to determine soil thermal properties. Journal of Geotechnical and Geoenvironmental Engineering, 142(3): 04015085.
Alrtimi A., Rouainia M., and Manning D. 2014. An improved steady-state apparatus for measuring thermal conductivity of soils. International Journal of Heat and Mass Transfer, 72: 630–636.
Amatya B., Soga K., Bourne-Webb P., Amis T., and Laloui L. 2012. Thermo-mechanical behaviour of energy piles. Géotechnique, 62(6): 503–519.
ASTM. 1993. Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus. ASTM C177-85. ASTM International, West Conshohocken, Pa.
ASTM. 2014. Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM D5334-14. ASTM International, West Conshohocken, Pa.
ASTM. 2020. Standard test method for electronic friction cone and piezocone penetration testing of soils. ASTM D5778-20. ASTM International, West Conshohocken, Pa.
Blackwell J. 1956. The axial-flow error in the thermal-conductivity probe. Canadian Journal of Physics, 34(4): 412–417.
Brandl H. 2006. Energy foundations and other thermo-active ground structures. Géotechnique, 56(2): 81–122.
Cai G., Liu S., Tong L., and Du G. 2009. Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles. Engineering Geology, 104(3–4): 211–222.
Cai G., Zhang T., Puppala A.J., and Liu S. 2015. Thermal characterization and prediction model of typical soils in Nanjing area of China. Engineering Geology, 191: 23–30.
Carlsaw, H., and Jaeger, J. 1959. Conduction of heat in solids. Clarendon, Oxford.
Corasaniti S. and Gori F. 2017. Heat conduction in two and three-phase media with solid spherical particles of the same diameter. International Journal of Thermal Sciences, 112: 460–469.
Damfeu J., Meukam P., and Jannot Y. 2016. Modeling and measuring of the thermal properties of insulating vegetable fibers by the asymmetrical hot plate method and the radial flux method: Kapok, coconut, groundnut shell fiber and rattan. Thermochimica Acta, 630: 64–77.
De Gijt, J., and Van Roekel, G. 1987. Cone penetration testing in relation to environmental problems. In Environmental technology. pp. 577–586.
Decagon Devices, Inc. 2016. KD2 pro thermal properties analyzer operator’s manual. Decagon Devices, Inc., Pullman, Wash.
Ezekoye, O.A. 2016. Conduction of heat in solids. In SFPE handbook of fire protection engineering. Springer, pp. 25–52.
Franco A. and Conti P. 2020. Clearing a path for ground heat exchange systems: a review on Thermal Response Test (TRT) methods and a geotechnical routine test for estimating soil thermal properties. Energies, 13(11): 2965.
Gangadhara Rao M.V.B.B. and Singh D.N. 1999. A generalized relationship to estimate thermal resistivity of soils. Canadian Geotechnical Journal, 36(4): 767–773.
Gens A., Sánchez M., Guimarães L.D.N., Alonso E., Lloret A., Olivella S., et al. 2009. A full-scale in situ heating test for high-level nuclear waste disposal: observations, analysis and interpretation. Géotechnique, 59(4): 377–399.
Goodhew S. and Griffiths R. 2004. Analysis of thermal-probe measurements using an iterative method to give sample conductivity and diffusivity data. Applied Energy, 77(2): 205–223.
Haigh S. 2012. Thermal conductivity of sands. Géotechnique, 62(7): 617–625.
Han J., Sun Q., Xing H., Zhang Y., and Sun H. 2017. Experimental study on thermophysical properties of clay after high temperature. Applied Thermal Engineering, 111: 847–854.
IEEE. 1981. Guide for soil thermal resistivity measurements. IEEE Std. 442-1981. EUA: IEEE.
ISO. 2015. Geotechnical Investigation and Testing-Geothermal Testing-Determination of Thermal conductivity of soil and rock using borehole heat exchangers. International Standard ISO, 17628.2015.
Lee C.K. 2011. Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation. Applied Energy, 88(12): 4405–4410.
Lines S., Williams D.J., and Galindo-Torres S.A. 2017. Determination of thermal conductivity of soil using standard cone penetration test. Energy Procedia, 118: 172–178.
Liu L., Cai G., Liu X., Liu S., and Puppala A.J. 2019. Evaluation of thermal-mechanical properties of quartz sand–bentonite–carbon fiber mixtures as the borehole backfilling material in ground source heat pump. Energy and Buildings, 202: 109407.
Liu L., Cai G., and Liu X. 2020a. Investigation of thermal conductivity and prediction model of recycled tire rubber-sand mixtures as lightweight backfill. Construction and Building Materials, 248: 118657.
Liu L., Cai G., Zhang J., Liu X., and Liu K. 2020b. Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review. Renewable and Sustainable Energy Reviews, 126: 109831.
Liu S., Guo Y., Zhang G., and Zhou Y. 2020. Development and application of heat conduction CPT probe. Chinese Journal of Geotechnical Engineering, 42(2): 354–361. [In Chinese.]
Liu X., Cai G., Liu L., Liu S., and Puppala A.J. 2019. Thermo-hydro-mechanical properties of bentonite-sand-graphite-polypropylene fiber mixtures as buffer materials for a high-level radioactive waste repository. International Journal of Heat and Mass Transfer, 141: 981–994.
Liu X., Cai G., Congress S.S.C., Liu L., and Liu S. 2020. Investigation of thermal conductivity and prediction model of mucky silty clay. Journal of Materials in Civil Engineering, 32(8): 04020221.
Lunne, T., Powell, J.J., and Robertson, P.K. 2002. Cone penetration testing in geotechnical practice. CRC Press.
Ministry of Construction of People’s Republic of China. 1999. Standard for soil test method, GB/T 50123-1999. Ministry of Construction of People’s Republic of China, Beijing, China.
Mochlinski, K. 1964. Some industrial measurements of thermal properties of soil. In International Study Group on Soils, Cambridge, England, 12–26 July. pp. 168–178.
Narasimhan T. 1999. Fourier’s heat conduction equation: History, influence, and connections. Reviews of Geophysics, 37(1): 151–172.
Nouveau M., Grandjean G., Leroy P., Philippe M., Hedri E., and Boukcim H. 2016. Electrical and thermal behaviour of unsaturated soils: experimental results. Journal of Applied Geophysics, 128: 115–122.
Sanner, B., Hellström, G., Spitler, J., and Gehlin, S. 2005. Thermal response test–current status and world-wide application. In Proceedings, World Geothermal Congress, International Geothermal Association.
Slusarchuk, W., and Foulger, P. 1973. Development and calibration of a thermal conductivity probe apparatus: for use in the field and laboratory. Technical paper. National Research Council of Canada, Division of Building Research.
Sproull R.L. 1962. The conduction of heat in solids. Scientific American, 207(6): 92–107.
Vardon P.J., Baltoukas D., and Peuchen J. 2019. Interpreting and validating the thermal cone penetration test (T-CPT). Géotechnique, 69(7): 580–592.
Xamán J., Lira L., and Arce J. 2009. Analysis of the temperature distribution in a guarded hot plate apparatus for measuring thermal conductivity. Applied Thermal Engineering, 29(4): 617–623.
Zhang C., Guo Z., Liu Y., Cong X., and Peng D. 2014. A review on thermal response test of ground-coupled heat pump systems. Renewable and Sustainable Energy Reviews, 40: 851–867.
Zhang N. and Wang Z. 2017. Review of soil thermal conductivity and predictive models. International Journal of Thermal Sciences, 117: 172–183.

Information & Authors

Information

Published In

cover image Canadian Geotechnical Journal
Canadian Geotechnical Journal
Volume 59Number 4April 2022
Pages: 510 - 525

History

Received: 19 January 2021
Accepted: 7 July 2021
Accepted manuscript online: 12 July 2021
Version of record online: 12 July 2021

Permissions

Request permissions for this article.

Key Words

  1. thermal piezocone penetration test (T-CPTU)
  2. in situ tests
  3. temperature distribution
  4. thermal conductivity

Mots-clés

  1. essai de pénétration thermique par piézocône (T-CPTU)
  2. essais in situ
  3. distribution de la température
  4. conductivité thermique

Authors

Affiliations

Xiaoyan Liu
Institute of Geotechnical Engineering, Southeast University, No. 2 Southeast University Road, Jiangning Development Zone, Nanjing, Jiangsu, 211189, P.R. China.
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Surya Sarat Chandra Congress
Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
Institute of Geotechnical Engineering, Southeast University, No. 2 Southeast University Road, Jiangning Development Zone, Nanjing, Jiangsu, 211189, P.R. China.
Lulu Liu
Institute of Geotechnical Engineering, Southeast University, No. 2 Southeast University Road, Jiangning Development Zone, Nanjing, Jiangsu, 211189, P.R. China.
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Songyu Liu
Institute of Geotechnical Engineering, Southeast University, No. 2 Southeast University Road, Jiangning Development Zone, Nanjing, Jiangsu, 211189, P.R. China.
Anand J. Puppala
Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
Wenwei Zhang
Institute of Geotechnical Engineering, Southeast University, No. 2 Southeast University Road, Jiangning Development Zone, Nanjing, Jiangsu, 211189, P.R. China.

Notes

*
Present address: Institute of Geotechnical Engineering, Southeast University, No. 2 Southeast University Road, Jiangning Development Zone, Nanjing, Jiangsu, 211189, P.R. China; School of Civil Engineering, Anhui Jianzhu University, No. 292 Ziyun Road, Shushan District, Hefei, Anhui, 230601, P.R. China.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Evaluating the thermal performance of unsaturated bentonite–sand–graphite as buffer material for waste repository using an improved prediction model
2. Pore structure evolution of unsaturated GMZ bentonite under thermo-hydro effects through ESEM fixed-point observation
3. Research on safety evaluation method of high-fill slope considering heterogeneity and anisotropy

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Geotechnical Journal

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media