Storage duration, light, temperature, and salinity exposure influence germination of the glycophyte Rhanterium epapposum

Publication: Botany
28 January 2021


Regeneration of native species is the first priority for biodiversity conservation and restoration. To this end, it is key to have seeds properly conserved in seed banks and knowledge of seed longevity and (or) dormancy alleviation at different storage time intervals. In addition, understanding the germination response of the stored seeds to environmental conditions improves the efficiency of restoration and rehabilitation projects. We investigated the influence of storage duration (1–5 years), light (0 or 12 h of illumination), thermoperiod (night/day temperatures of 15/20 and 20/25 °C), and salinity (0, 100, 200. and 400 mmol/L of NaCl) on seed germination of Rhanterium epapposum, a glycophytic species from the Arabian Peninsula. Seeds maintained viability after five years of storage indoors at room temperature. Three years of storage alleviated seed dormancy. Exposure to 12 h light per day and thermoperiods of 15/20 °C enhanced seed germination. The seeds were glycophytic; after-ripened seeds exposed to salinity exhibited reduced rates of germination that did not recover after the salinity was alleviated.


La régénération des espèces indigènes est une priorité pour la conservation et la restauration de la biodiversité. À cette fin, il est essentiel de disposer de semences correctement conservées dans des banques de semences et de connaître la longévité et (ou) l’atténuation de la dormance des semences à différents intervalles de temps de stockage. En outre, la compréhension de la germination des semences stockées aux conditions environnementales améliore l’efficacité des projets de restauration et de réhabilitation. Les auteurs ont étudié l’influence de la durée de stockage (1 à 5 ans), de la lumière (0 ou 12 h de lumière), de la thermopériode (températures nuit/jour de 15/20 et 20/25 °C) et de la salinité (0, 100, 200 et 400 mmol/L de NaCl) sur la germination des semences de Rhanterium epapposum, une espèce glycophytique de la péninsule arabique. Les graines conservaient leur viabilité après cinq ans de stockage à l’intérieur, à température ambiante. Trois années de stockage permettaient de réduire la dormance des semences. L’exposition à 12 heures de lumière par jour et à des thermopériodes de 15/20 °C favorisait la germination des semences. Les graines étaient glycophytiques ; les graines post-maturées exposées à la salinité présentaient une germination réduite qui ne se rétablissait pas après la diminution de la salinité. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.


Al Salameen F., Habibi N., Al Amad S., Kumar V., Dashti J., Talebi L., and Al Doaij B. 2020. Genetic diversity analysis of Rhanterium epapposum Oliv. by ISSRs reveals a weak population structure. Curr. Plant Biol. 21: 100138.
Arif I.A., Bakir M.A., Khan H.A., Al Farhan A.H., Al Homaidan A.A., Bahkali A.H., et al. 2010. A brief review of molecular techniques to assess plant diversity. Int. J. Mol. Sci. 11(5): 2079–2096.
Bair N.B., Meyer S.E., and Allen P.S. 2006. A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Sci. Res. 16(1): 17–28.
Baskin, C.C., and Baskin, J.M. 2014. Seeds: Ecology, Biogeography, and Evolution of Seed Dormancy and Germination. 2nd ed. Academic Press, San Diego, CA.
Baskin C.C. and Baskin J.M. 2020. Breaking seed dormancy during dry storage: a useful tool or major problem for successful restoration via direct seeding? Plants, 9(5): 636.
Bhatt A. and Pérez-García F. 2016. Seed dormancy of Ochradenus baccatus (Resedaceae), a shrubby species from Arabian Desert regions. Rev. Biol. Trop. 64(3): 965–974.
Bhatt A. and Santo A. 2016. Germination and recovery of heteromorphic seeds of Atriplex canescens (Amaranthaceae) under increasing salinity. Plant Ecol. 217: 1069–1079.
Bhatt A. and Santo A. 2017. Effects of photoperiod, thermoperiod, and salt stress on Gymnocarpos decandrus seeds: potential implications in restoration ecology activities. Botany, 95(11): 1093–1098.
Bhatt A., Gairola S., and El-Keblawy A. 2016a. Seed colour affects dormancy and germination requirements in two species of Lotus (Fabaceae). Rev. Biol. Trop. 64(2): 483–492.
Bhatt A., Pérez-García F., Mercedes Carón M., and Gallacher D. 2016b. Germination response of Salsola schweinfurthii (Chenopodiaceae) to salinity and winged perianth removal. Seed Sci. Technol. 44(2): 428–434.
Bhatt A., Pérez-García F., and Phondani P.C. 2016c. Foliage colour influence on seed germination of Bienertia cycloptera in Arabian deserts. Nord. J. Bot. 34(4): 428–434.
Bhatt A., Bhat N.R., Suleiman M.K., and Santo A. 2018. Effects of storage, mucilage presence, photoperiod, thermoperiod and salinity on germination of Farsetia aegyptia Turra (Brassicaceae) seeds: implications for restoration and seed banks in Arabian Desert. Plant Biosyst. 153(2): 280–287.
Bhatt A., Bhat N.R., Murru V., and Santo A. 2019a. Eco-physiological studies on desert plants: germination of Halothamnus iraqensis Botsch. seeds under different conditions. J. Arid Land. 11: 75–85.
Bhatt A., Bhat N.R., Santo A., and Phartyal S.S. 2019b. Influence of temperature, light and salt on the germination of Deverra triradiata. Seed Sci. Technol. 47(1): 25–31.
Bisaro A., Kirk M., Zdruli P., and Zimmermann W. 2014. drivers setting desertification research priorities: Insights from a stakeholder consultation forum. Land Degrad. Dev. 25(1): 5–16.
Brown G. 2002. Species richness, diversity and biomass production of desert annuals in an ungrazed Rhanteriun epapposum community over three growth seasons in Kuwait. Plant Ecol. 165: 53–68.
Brown G. 2003. Factors maintaining plant diversity in degraded areas of northern Kuwait. J. Arid Environ. 54(1): 183–194.
Brown G. and Al-Mazrooei S. 2003. Rapid vegetation regeneration in a seriously degraded Rhanterium epapposum community in northern Kuwait after 4 years of protection. J. Environ. Manage. 68(4): 387–395.
Caballero I., Olano J.M., Loidi J., and Escudero A. 2003. Seed bank structure along a semi-arid gypsum gradient in Central Spain. J. Arid Environ. 55(2): 287–299.
Chaudhary, S.A. 2001. Flora of the Kingdom of Saudi Arabia (Vascular Plants). National Agriculture and Water Research Center, National Herbarium, Ministry of Agriculture and Water, Riyadh.
Cochrane J.A., Crawford A.D., and Monks L.T. 2007. The significance of ex situ seed conservation to reintroduction of threatened plants. Aust. J. Bot. 55(3): 356–361.
Cohen D. 1967. Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsequent outcome. J. Theor. Biol. 16(1): 1–14.
El-Keblawy A., Gairola S., and Bhatt A. 2016. Maternal salinity environment affects salt tolerance during germination in Anabasis setifera: a facultative desert halophyte. J. Arid Land. 8(2): 254–263.
Elzenga J.T., Bekker R.M., and Pritchard H.W. 2019. Maximising the use of native seeds in restoration projects. Plant Biol. J. 21(3): 377–379.
FAO, 2010. Forests and climate change in the near east region. Research and Extension, Food and Agriculture Organization of the United Nations, Rome, Italy.
Goodwin J.R., Doescher P.S., and Eddleman L.E. 1995. After-ripening in Festuca idahoensis seeds: Adaptive dormancy and implications for restoration. Restor. Ecol. 3(2): 137–142.
Gorai M., Gasmi H., and Neffati M. 2011. Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae). Saudi J. Biol. Sci. 18(3): 255–260.
Gutterman, Y. 2000. Seed dormancy as one of the survival strategies in annual plant species occurring in deserts. In Dormancy in Plants: From Whole Plant Behaviour to Cellular Control. Edited by J.D. Viemont and J. Crabbé. CABI Publishing, Wallingford. pp. 139–159.
Halwagy R., Moustafa A.F., and Kamel S.M. 1982. On the ecology of the desert vegetation in Kuwait. J. Arid Environ. 5(2): 95–107.
Hawkins, B., Sharrock, S., and Havens, K. 2008. Plants and climate change: which future? Botanic Gardens Conservation International, Richmond, UK.
Hay F.R. and Probert R.J. 2013. Advances in seed conservation of wild plant species: a review of recent research. Conserv. Physiol. 1(1): cot030–11.
Hellyer, P., and Aspinall, S. 2005. The Emirates: a natural history. Trident Press Ltd. The Environmental Agency, Abu Dhabi.
Kucera B., Cohn M.A., and Leubner-Metzger G. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15(4): 281–307.
Length, R. 2016. Least-Squares Means. R Package ‘lsmeans’.
León‐Lobos P., Bustamante‐Sánchez M.A., Nelson C.R., Alarcón D., Hasbún R., Way M., et al. 2020. Lack of adequate seed supply is a major bottleneck for effective ecosystem restoration in Chile: Friendly amendment to Bannister et al. (2018). Restor. Ecol. 28(2): 277–281.
Mahmood A.H., Florentine S.K., Chauhan B.S., McLaren D.A., Palmer G.C., and Wright W. 2016. Influence of various environmental factors on seed germination and seedling emergence of a noxious environmental weed: green galenia (Galenia pubescens). Weed Sci. 64(3): 486–494.
Maighal M., Salem M., Kohler J., and Rillig M.C. 2016. Arbuscular mycorrhizal fungi negatively affect soil seed bank viability. Ecol. Evol. 6(21): 7683–7689.
Mayer, A.M., and Poljakoff-Mayber, A. 1975. The germination of seeds. Pergamon Press, The Macmillan Co., New York.
Merritt D.J. and Dixon K.W. 2011. Restoration seed banks–a matter of scale. Science, 332(6028): 424–425.
Milberg P., Andersson L., and Thompson K. 2000. Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Sci. Res. 10(1): 99–104.
Mishra, S.R. 2009. Understanding Plant Reproduction. Discovery Publishing House Pvt. Ltd, New Delhi, India.
Niane A.A., Struik P.C., and Bishaw Z. 2013. Effects of temperature, relative humidity and moisture content on seed longevity of shrubby russian thistle (Salsola vermiculata L.). J. Agric. Sci. Technol. B. 3: 623–634.
Omar Asem S. and Roy W.Y. 2010. Biodiversity and climate change in Kuwait. Int. J. Climate Chan. Strat. Manage. 2(1): 68–83.
Omar S.A.S. and Bhat N.R. 2008. Alteration of the Rhanterium epapposum plant community in Kuwait and restoration measures. Int. J. Environ. Sci. 65(1): 139–155.
Omar S.A.S., Misak R., King P., Shahid S.A., Abo-Rizq H., Grealish G., and Roy W. 2001. Mapping the vegetation of Kuwait through reconnaissance soil survey. J. Arid Environ. 48(3): 341–355.
Omar, S.A.S., Al-Mutawa, Y., and Zaman, S. 2007. Vegetation of Kuwait, A comprehensive illustrative guide to the flora and ecology of the Desert of Kuwait. Al Assriya Printing Press Publishing and Distribution Company, Kuwait Institute for Scientific Research, Kuwait.
Onofri A., Benincasa P., Mesgaran M.B., and Ritz C. 2018. Hydrothermal-time-to-event models for seed germination. Eur. J. Agron. 101: 129–139.
Phondani P.C., Bhatt A., Elsarrag E., and Horr Y.A. 2016. Ethnobotanical magnitude towards sustainable utilization of wild foliage in Arabian desert. J. Trad. Complement. Med. 6(3): 209–218.
R Core Team, 2019. R: a language and environment for statistical computing. [Computer software.] R Foundation for Statistical Computing, Vienna, Austria.
Ribot, J.C., Magalhaes, A.R., and Panagides, S. 2005. Climate variability, climate change and social vulnerability in the semi-arid tropics. Cambridge University Press.
Ritz, C., Jensen, S.M., Gerhard, D., and Gerhard, D. 2019. Dose-Response Analysis Using R. CRC Press. Boca Raton, Fla.
Rubio-Casal A.E., Castillo J.M., Luque C.J., and Figueroa M.E. 2003. Influence of salinity on germination and seeds viability of two primary colonizers of Mediterranean salt pans. J. Arid Environ. 53(2): 145–154.
Ruiz M., Martín I., and Cuadra C.D.L. 1999. De la Cuadra C. 1999. Cereal seed viability after 10 years of storage in active and base germplasm collections. Field Crops Res. 64(3): 229–236.
Schütz W. and Rave G. 2003. Variation in seed dormancy of the wetland sedge, Carex elongata, between populations and individuals in two consecutive years. Seed Sci. Res. 13(4): 315–322.
Shaban M. 2013. Review on physiological aspects of seed deterioration. Int. Agric. Crop Sci. 6(11): 627–631.
Suleiman M.K., Bhat N.R., Abdal M.S., Zaman S., Jacob S., and Thomas R.R. 2009. Germination studies in Rhanterium epapposum Oliv. World Appl. Sci. J. 7(4): 468–471.
Thalen, D.C.P. 1979. Ecology and utilization of desert shrub range lands in Iraq. 1st ed. Springer, U.S.A.
Vincent, P. 2008. Saudi Arabia: an environmental overview. CRC Press, London, UK.
Vitt P., Havens K., Kramer A.T., Sollenberger D., and Yates E. 2010. Assisted migration of plants: changes in latitudes, changes in attitudes. Biol. Conserv. 143(1): 18–27.
Walters C., Wheeler L.M., and Grotenhuis J.M. 2005. Longevity of seeds stored in a genebank: species characteristics. Seed Sci. Res. 15(1): 1–20.
Watson A.K. and Renney A.J. 1974. The biology of Canadian weeds.: Centaurea diffusa and C. maculosa. Can. J. Plant Sci. 54(4): 687–701.
Younis S.I. and Adam S.E.I. 2008. Evaluation of toxicity of Rhanterium epapposum in Wistar rats. J. Pharmacol. Toxicol. 3(2): 134–140.
Zaman, S. 2006. Establishment of seed bank unit for native plants of Kuwait. Report No. KISR 8536. Kuwait Institute for Scientific Research, Kuwait.
Zaman S. 2013. Effect of five years storage on the germination of Zygophyllum qatarense Hadidi. J. Agric. Biodivers. Res. 2: 63–66.
Zaman S., Padmesh S., and Tawfiq H. 2010. Germination ecology of Rhanterium epapposum Olive. Am. J. Appl. Sci. 7(10): 1321–1326.
Zohary M. 1950. Evolutionary trends in the fruiting head of Compositae. Evolution, 4(2): 103–109.

Information & Authors


Published In

cover image Botany
Volume 99Number 5May 2021
Pages: 261 - 267


Received: 12 August 2020
Accepted: 18 November 2020
Published online: 28 January 2021


Request permissions for this article.

Key Words

  1. after-ripening
  2. desert
  3. glycophyte
  4. restoration


  1. post-maturation
  2. désert
  3. glycophyte
  4. restauration



Arvind Bhatt
Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, China.
María Mercedes Carón
Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, CC 4955000, Argentina.
David Gallacher
School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW 2390, Australia.
Paulo Roberto de Moura Souza-Filho
Multidisciplinary Center of Barra, Federal University of Western Bahia, Barra, BA, Brazil.


Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Botany

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share with email

Email a colleague

Share on social media