Fungal symbionts of endangered Crocanthemum canadense (Cistaceae) in Nova Scotia

Publication: Botany
9 March 2021


Crocanthemum canadense (L.) Britton (Cistaceae) is critically imperiled in Nova Scotia. The decline of Nova Scotian Crocanthemum canadense is largely due to the loss of the Annapolis Valley sand barrens habitat. Fungal symbionts may aid in nutrient and water acquisition as well as plant defenses. The role of fungal associations with Crocanthemum canadense is unknown; our goal was to identify fungal symbionts to inform ongoing conservation research. We isolated fungi from eighteen Crocanthemum canadense plants collected from Greenwood, Nova Scotia. Using internal transcribed spacer (ITS) rDNA barcoding of fungal cultures, we identified 58 fungal taxa. ITS2 meta-amplicon barcoding of roots and rhizosphere soil revealed 241 fungi with basidiomycetes accounting for 53.8% of reads. Chaetothyriales sp., Mycetinis scorodonius, Acidomelania panicicola, and Scleroderma citrinum were the most abundant root associates based on meta-amplicon data. We quantified percent root colonization of arbuscular mycorrhizal fungi (AMF) using root staining and microscopy. The average AMF colonization rate of the roots was 29.6% (n = 18). Our research provides a foundation for understanding the fungal community in this declining habitat and the first account of fungal symbionts in the above- and below-ground tissues and rhizosphere of Crocanthemum canadense. Identifying fungi influencing endangered Nova Scotian Crocanthemum canadense is valuable for developing conservation strategies.


Crocanthemum canadense (L.) Britton (Cistaceae) est en grand danger d’extinction en Nouvelle-Écosse. Le déclin de Crocanthemum canadense néo-écossais est principalement dû à la perte d’habitat des landes de sable de la vallée de l’Annapolis. Les symbiotes fongiques peuvent contribuer à l’acquisition de nutriments et d’eau ainsi qu’à la défense des plantes. Le rôle des associations fongiques avec Crocanthemum canadense est inconnu ; l’objectif des auteurs consistait à identifier les symbiotes fongiques afin de guider les recherches en cours sur la conservation. Ils ont isolé des champignons à partir de dix-huit plants de Crocanthemum canadense récoltés à Greenwood, en Nouvelle-Écosse. En utilisant le code à barres de l’interne transcrit spacer (ITS) de l’ADNr des cultures fongiques, ils ont identifié 58 taxons fongiques. Le codage à barres du méta-amplicon ITS2 des racines et du sol de la rhizosphère a révélé la présence de 241 champignons, les basidiomycètes représentant 53,8 % des lectures. Chaetothyriales sp., Mycetinis scorodonius, Acidomelania panicola, et Scleroderma citrinum étaient les espèces associées racines les plus abondantes sur la base des données méta-amplicon. Les auteurs ont quantifié le pourcentage de colonisation des racines par les champignons mycorhiziens à arbuscules (CMA) en utilisant la coloration des racines et la microscopie. Le taux moyen de colonisation des racines par les CMA était de 29,6 % (n =18). Ils fournissent une base pour comprendre la communauté fongique dans cet habitat en déclin et la première description des symbiotes fongiques dans les tissus aériens et souterrains et la rhizosphère de Crocanthemum canadense. L’identification des champignons influençant Crocanthemum canadense en Nouvelle-Écosse, une espèce menacée, est précieuse pour l’élaboration de stratégies de conservation. [Traduit par la Rédaction]

Get full access to this article.

View all available purchase options and get full access to this article.


Altschul S.F., Gish W., Miller W., Myers E.W., and Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215(3): 403–410.
Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Cambridge, England. Available at
Ariyawansa H.A., Kang J.C., Alias S.A., Chukeatirote E., and Hyde K.D. 2014. Pyrenophora. Mycosphere, 5(2): 351–362.
Baltruschat H., Santos V.M., da Silva D.K.A., Schellenberg I., Deubel A., Sieverding E., and Oehl F. 2019. Unexpectedly high diversity of arbuscular mycorrhizal fungi in fertile Chernozem croplands in Central Europe. CATENA. 182. 1–11.
Beeck M.O.D., Lievens B., Busschaert P., Declerck S., Vangronsveld J., and Colpaert J.V. 2014. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One. 9(6): e97629.
Begerow D., Nilsson H., Unterseher M., and Maier W. 2010. Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl. Microbiol. Biotechnol. 87(1): 99–108.
Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C., Al-Ghalith G.A., et al. 2018. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr. 6(e27295v27291).
Bonfante, P. 2001. At the interface between mycorrhizal fungi and plants: The structural organization of cell wall, plasma membrane and cytoskeleton. In Fungal Associations. Edited by B. Hock. Springer, Berlin, Heidelberg, Berlin, Germany. pp. 45–91.
Braun U., Nakashima C., Crous P.W., Groenewald J.Z., Moreno-Rico O., Rooney-Latham S., et al. 2018. Phylogeny and taxonomy of the genus Tubakia s. lat. Fungal Syst. Evol. 1(1): 41–99.
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., and Holmes S.P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods, 13(7): 581–583.
Carbyn S., Catling P.M., Vander Kloet S.P., and Basquill S. 2006. An analysis of the vascular flora of Annapolis heathlands, Nova Scotia. Can. Field. Nat. 120(3): 351–362.
Comandini O., Contu M., and Rinaldi A.C. 2006. An overview of Cistus ectomycorrhizal fungi. Mycorrhiza, 16(6): 381–395.
Comeau A.M., Douglas G.M., and Langille M.G.I. 2017. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems, 2(1): e00127-16.
Danielson R.M. 1984. Ectomycorrhizal associations in jack pine stands in northeastern Alberta. Can. J. Bot. 62(5): 932–939.
Demoulin V. 1983. Un site remarquable pour ses Gastéromycètes: les grès rouges permiens du nord du massif des Maures (Var, France). Cryptogam. Mycol. 4: 9–18.
Dickie I.A., Guza R.C., Krazewski S.E., and Reich P.B. 2004. Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytol. 164(2): 375–382.
Dissanayake A.J., Purahong W., Wubet T., Hyde K.D., Zhang W., Xu H., et al. 2018. Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Divers, 90(1): 85–107.
Dwibedi V. and Saxena S. 2018. Arcopilus aureus, a resveratrol-producing endophyte from Vitis vinifera. Appl. Biochem. Biotechnol. 186(2): 476–495.
Egidi E., Delgado-Baquerizo M., Plett J.M., Wang J., Eldridge D.J., Bardgett R.D., et al. 2019. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10(1): 1–9.
Evans, E. 2017. Mixed mating and its ecological impact on an endangered plant: Crocanthemum canadense (L.) Britt. Honours thesis. Acadia University. Available at [accessed 9 May 2018].
Goldmann K., Schröter K., Pena R., Schöning I., Schrumpf M., Buscot F., et al. 2016. Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Sci. Rep. 6(1): 1–10.
González, I.G. 2015. Molecular fungal diversity and its ecological function in sand-dune soils. Doctoral dissertation. The University of Manchester, Manchester, England.
Grünig C.R., Duò A., Sieber T.N., and Holdenrieder O. 2008. Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.1.-Acephala applanata species complex. Mycologia. 100(1): 47–67.
Hoff J.A., Klopfenstein N.B., McDonald G.I., Tonn J.R., Kim M.-S., Zambino P.J., et al. 2004. Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). For. Pathol. 34(4): 255–271.
Hou W., Lian B., Dong H., Jiang H., and Wu X. 2012. Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions. Geosci. Front. 3(3): 351–356.
Irizarry, I. 2010. Diversity of endophytes in various plants from Woods Hole, MA. Marine Biological Laboratory, University of Chicago, Woods Hole, MA.
Jeewon, R., and Hyde, K.D. 2007. Detection and diversity of fungi from environmental samples: Traditional versus molecular approaches. In Advanced Techniques in Soil Microbiology, First. Edited by A. Varma and R. Oelmüller. Springer, Berlin, Germany. pp. 1–15.
Jeffries, P. 1999. Scleroderma. In Ectomycorrhizal fungi key genera in profile. Edited by J.W.G. Cairney and S.M. Chambers. Springer, Berlin, Heidelberg, Berlin, Germany. pp. 187–200.
Katoh K. and Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30(4): 772–780.
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12): 1647–1649.
Kowalik M. 2013. Diversity of fungi colonizing and damaging leaves of pontic azalea Azalea pontica. Acta Mycol. 48(2): 227–236.
Le Pioufle O., Ganoudi M., Calonne-Salmon M., Ben Dhaou F., and Declerck S. 2019. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress. Front. Plant Sci. 10(897): 1–12.
Leonardi M., Neves M.-A., Comandini O., and Rinaldi A.C. 2018. Scleroderma meridionale ectomycorrhizae on Halimium halimifolium: expanding the Mediterranean symbiotic repertoire. Symbiosis. 76(2): 199–208.
Li T., Lin G., Zhang X., Chen Y., Zhang S., and Chen B. 2014. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza. 24: 595–602.
Lopes U.P., Zambolim L., Lopes U.N., Pereira O.L., and Costa H. 2010. First report of Pilidium concavum causing tan-brown rot in strawberry fruits in Brazil. Plant Pathol. 59(6): 1171–1172.
Lübeck M., Bulat S., Alekhina I., and Lieckfeldt E. 2004. Delineation of species within the Trichoderma viride/atroviride/koningii complex by UP-PCR cross-blot hybridization. FEMS Microbiol. Lett. 237(2): 255–260.
Luo J., Walsh E., Miller S., Blystone D., Dighton J., and Zhang N. 2017. Root endophytic fungal communities associated with pitch pine, switchgrass, and rosette grass in the pine barrens ecosystem. Fungal Biol. 121(5): 478–487.
Malloch D. and Thorn R.G. 1985. The occurrence of ectomycorrhizae in some species of Cistaceae in North America. Can. J. Bot. 63(5): 872–875.
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17(1): 10–12.
Marx D.H. 1969. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology. 59: 153–163.
Massicotte H.B., Peterson R.L., Melville L.H., and Tackaberry L.E. 2010. Hudsonia ericoides and Hudsonia tomentosa: Anatomy of mycorrhizas of two members in the Cistaceae from Eastern Canada. Botany. 88(6): 607–616.
Mehlich A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15(12): 1409–1416.
Minas. 2020. MapChart. Available at [accessed 2 February 2020].
Morton, J.B., Koske, R.E., Stürmer, S.L., and Bentivenga, S.P. 2004. Mutualistic arbuscular endomycorrhizal fungi. In Biodiversity of Fungi: Inventory and Monitoring Methods, 1st Edition. Edited by G. Mueller, M. Foster, and G. Bills. Elsevier Academic Press, Amsterdam. pp. 317–336. Available from
Mundra S., Halvorsen R., Kauserud H., Müller E., Vik U., and Eidesen P.B. 2015. Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the aboveground vegetation. New Phytol. 205(4): 1587–1597.
Nallanchakravarthula S., Mahmood S., Alström S., and Finlay R.D. 2014. Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry. PLoS One. 9(10): e111455–10.
Neily, P., Basquill, S., Quigley, E., and Keys, K., 2017. Ecological land classification for Nova Scotia. Nova Scotia Department of Natural Resources, Renewable Resources Branch, Truro, Nova Scotia. Available at [accessed 28 January 2020].
Neuwirth, E. 2014. RColorBrewer: ColorBrewer palettes. Available at
Newell, R.E. 2007. Nova Scotia provincial status report on rockrose (Canada frostweed) (Helianthemum canadense (L.) Michx.). Nova Scotia Species at Risk Working Group, Wolfville, NS. Available from [accessed 17 May 2018].
Newell, R.E. 2018. Nova Scotia provincial update status report on rockrose (Canada frostweed) (Crocanthemum canadense (L.) Britton) [Report in preparation]. Nova Scotia Species at Risk Working Group, Wolfville, NS.
Nilsson R.H., Larsson K.-H., Larsson E., and Kõljalg U. 2006. Fruiting body-guided molecular identification of root-tip mantle mycelia provides strong indications of ectomycorrhizal associations in two species of Sistotrema (Basidiomycota). Mycol. Res. 110(12): 1426–1432.
Nilsson R.H., Larsson K.-H., Taylor A.F.S., Bengtsson-Palme J., Jeppesen T.S., Schigel D., et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47(D1): D259–D264.
Olariaga I., Salcedo I., Daniëls P., Spooner B., and Kautmanová I. 2015. Taxonomy and phylogeny of yellow Clavaria species with clamped basidia—Clavaria flavostellifera sp. nov. and the typification of C. argillacea, C. flavipes and C. sphagnicola. Mycologia. 107(1): 104–122.
Owen N.L. and Hundley N. 2004. Endophytes – The chemical synthesizers inside plants. Sci. Prog. 87(2): 79–99.
Paul A.R. 1971. Pyrenophora tetrarrhenae sp. nov., Drechslera tetrarrhenae sp. nov., and D. biseptata on Ehrharteae in Australia. Trans. Brit. Mycol. Soc. 56(2): 261–266.
Petersen R.H. and Hughes K.W. 2017. An investigation on Mycetinis (Euagarics, Basidiomycota). MycoKeys. 24: 1–138.
Porras-Alfaro A. and Bayman P. 2011. Hidden fungi, emergent properties: Endophytes and microbiomes. Annu. Rev. Phytopathol. 49(1): 291–315.
Price M.N., Dehal P.S., and Arkin A.P. 2010. FastTree 2 – Approximately maximum-likelihood trees for large alignments. PLoS One. 5(3): e9490.
R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at
R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at
Rodriguez R.J., Redman R.S., and Henson J.M. 2004. The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig. Adapt. Strateg. Glob. Chang. 9(3): 261–272.
Samuels G.J., Dodd S.L., Lu B.-S., Petrini O., Schroers H.-J., and Druzhinina I.S. 2006. The Trichoderma koningii aggregate species. Stud. Mycol. 56: 67–133.
Senanayake I.C., Crous P.W., Groenewald J.Z., Maharachchikumbura S.S.N., Jeewon R., Phillips A.J.L., et al. 2017. Families of Diaporthales based on morphological and phylogenetic evidence. Stud. Mycol. 86: 217–296.
Sheridan J.E. 1977. Drechslera spp. and other seed-borne pathogenic fungi in New Zealand cereals. New Zealand J. Agric. Res. 20(1): 91–93.
Sieber T.N., Sieber-Canavesi F., and Dorworth C.E. 1990. Simultaneous stimulation of endophytic Cryptodiaporthe hystrix and inhibition of Acer macrophyllum callus in dual culture. Mycologia, 82(5): 569–575.
Smith, S., and Read, D. 1997. Mycorrhizal symbioses. Acadmeic Press, New York, NY.
Sogonov M.V., Castlebury L.A., Rossman A.Y., Mejía L.C., and White J.F. 2008. Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Stud. Mycol. 62: 1–77.
Summerbell R.C. 2005. Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud. Mycol. 53: 121–145.
Sun X.-G. and Tang M. 2012. Comparison of four routinely used methods for assessing root colonization by arbuscular mycorrhizal fungi. Botany. 90(11): 1073–1083.
Sylvia D.M., Wilson D.O., Graham J.H., Maddox J.J., Mlllner P., Morton J.B., et al. 1993. Evaluation of vesicular-arbuscular mycorrhizal fungi in diverse plants and soils. Soil Biol. Biochem. 25(6): 705–713.
Tanney J.B., Douglas B., and Seifert K.A. 2016. Sexual and asexual states of some endophytic Phialocephala species of Picea. Mycologia, 108(2): 255–280.
Tedersoo L. and Smith M.E. 2013. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27(3): 83–99.
Teste F.P., Jones M.D., and Dickie I.A. 2020. Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 225(5): 1835–1851.
van Diepeningen A.D., Brankovics B., Iltes J., van der Lee T.A.J., and Waalwijk C. 2015. Diagnosis of Fusarium infections: Approaches to identification by the clinical mycology laboratory. Curr. Fungal Infect. Rep. 9(3): 135–143.
Vierheilig H., Coughlan A.P., Wyss U., and Piché Y. 1998. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 64(12): 5004–5007.
Walsh E., Luo J., and Zhang N. 2014. Acidomelania panicicola gen. et sp. nov. from switchgrass roots in acidic New Jersey pine barrens. Mycologia. 106(4): 856–864.
Walsh E., Luo J., Naik A., Preteroti T., and Zhang N. 2015. Barrenia, a new genus associated with roots of switchgrass and pine in the oligotrophic pine barrens. Fungal Biol. 119(12): 1216–1225.
White, T.J., Bruns, T., Lee, S., and Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: A guide to methods and applications. Edited by M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White. Academic Press Inc., San Diego, CA. pp. 315–322.
Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. In 2nd edition. Springer, Houston, Texas.
Wittenberg, N. 2015. Native pinelands plant for the landscape. State of New Jersey Pineland Commission, New Lisbon, NJ. Available at
Xu L., Ravnskov S., Larsen J., and Nicolaisen M. 2012. Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum. FEMS Microbiol. Ecol. 82(3): 736–745.

Supplementary Material

Supplementary data (cjb-2020-0187suppla.docx)

Information & Authors


Published In

cover image Botany
Volume 99Number 7July 2021
Pages: 403 - 419


Received: 7 October 2020
Accepted: 20 January 2021
Published online: 9 March 2021


Request permissions for this article.

Key Words

  1. AMF
  2. Cistaceae
  3. Crocanthemum
  4. endangered species
  5. endophyte
  6. mycorrhiza
  7. sand barren


  1. CMA
  2. Cistaceae
  3. Crocanthemum
  4. espèce menacée
  5. endophyte
  6. mycorhize
  7. lande de sable



Philicity R.M. Byers
Department of Earth and Environmental Science, Faculty of Pure and Applied Science, Acadia University, Wolfville, NS B4P 2R6, Canada.
Rodger C. Evans
Department of Biology, Faculty of Pure and Applied Science, Acadia University, Wolfville, NS B4P 2R6, Canada.
Zoë Migicovsky
Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
Allison K. Walker
Department of Biology, Faculty of Pure and Applied Science, Acadia University, Wolfville, NS B4P 2R6, Canada.


Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Botany

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

Full Text

Open Full Text


Download PDF





Share Options


Share the article link

Share with email

Share on social media