Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Ruthenium triphos complexes [Ru(X(CH2PPh2)3-κ3-P)(NCCH3)3](OTf)2; X = H3C-C, N) as catalysts for the conversion of furfuryl acetate to 1,4-pentanediol and cyclopentanol in aqueous medium

Publication: Canadian Journal of Chemistry
16 March 2020

Abstract

The ruthenium complexes [Ru(H3CC(CH2PPh2)3-κ3-P)(NCCH3)3](OTf)2 (1, (H3CC(CH2PPh2)3 = triphos) and [Ru(N(CH2PPh2)3-κ3-P)(NCCH3)3](OTf)2 (2, N(CH2PPh2)3 = N-triphos) have been evaluated as homogeneous ionic hydrogenation catalysts for the catalytic hydrodeoxygenation of furfuryl alcohol and furfuryl acetate to 1,4-pentanediol and cyclopentanol in aqueous media reaction mixtures. For furfuryl alcohol, only marginal yields of 1,4-pentanediol could be achieved with mass balance deficiencies due to humin formation ranging from 67% to 90%. Attempts to improve the catalytic activity of 2 by enhancing its water solubility by nitrogen protonation and (or) methylation failed. Employing the less self-reactive furfuryl acetate as the substrate substantially diminishes humin formation, yielding up to 43% of 1,4-pentanediol and 19% of cyclopentanol (via Piancatelli rearrangement) with 1 and up to 33% of 1,4-pentanediol and 5% of cyclopentanol with 2. A design of experiments study was used to determine and compare the yield responses of the multiple parallel reaction channels with 1,4-pentanediol, cyclopentanol, and humins as a function of reaction temperature, time, catalyst load, and substrate concentration. This explores the correlations between these parameters and their impact on the reaction outcome and suggests an extremely complex overall reaction cascade of interdependent pathways of both acid- and metal-catalyzed steps with some significant differences emerging between the two catalysts.

Graphical Abstract

Résumé

Nous avons évalué les complexes de ruthénium [Ru(H3CC(CH2PPh2)3-κ3-P)(NCCH3)3](OTf)2 (1, (H3CC(CH2PPh2)3 = triphos) et [Ru(N(CH2PPh2)3-κ3-P)(NCCH3)3](OTf)2 (2, N(CH2PPh2)3 = N-triphos) comme catalyseurs homogènes d’hydrogénation ionique pour effectuer l’hydrodésoxygénation catalytique de l’alcool furfurylique et de l’acétate de furfuryle en 1,4-pentanediol et en cyclopentanol dans des mélanges réactionnels en milieu aqueux. Dans le cas de l’alcool furfurylique, le 1,4-pentanediol n’a été obtenu qu’en faibles rendements et avec un bilan massique déficitaire en raison de la formation d’humines dans des proportions variant de 67 à 90 %. Nous avons tenté, sans succès, d’améliorer l’activité catalytique du complexe 2 en augmentant sa solubilité aqueuse par protonation ou par méthylation des atomes d’azote, ou une combinaison de ces deux méthodes. En employant l’acétate de furfuryle, qui est moins autoréactif, nous sommes parvenus à diminuer de manière substantielle la formation d’humines et à produire jusqu’à 43 % de 1,4-pentanediol et 19 % de cyclopentanol (par réarrangement de Piancatelli) avec le catalyseur 1, et jusqu’à 33 % de 1,4-pentanediol et 5 % de cyclopentanol avec le catalyseur 2. Nous avons utilisé une approche de type « plan d’expériences » pour déterminer et comparer les rendements résultant des différentes voies réactionnelles parallèles menant au 1,4-pentanediol, au cyclopentanol et aux humines en fonction de la température, du temps de réaction, de la charge catalytique et de la concentration du substrat. Cette approche permet d’explorer les corrélations entre ces paramètres et les effets de ces derniers sur les produits de la réaction. Le processus global est vraisemblablement le résultat d’une cascade extrêmement complexe de réactions interdépendantes catalysées tant par l’acide que par le métal dont certaines étapes révèlent des différences significatives entre les deux catalyseurs. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

(1)
Dalvand K., Rubin J., Gunukula S., Clayton Wheeler M., and Hunt G. Biomass Bioenergy 2018, 115, 56.
(2)
Jimenez-Gomez C. P., Cecilia J. A., Duran-Martin D., Moreno-Tost R., Santamaria-Gonzalez J., Merida-Robles J., Mariscal R., and Maireles-Torres P. J. Catal. 2016, 336, 107.
(3)
Mariscal R., Maireles-Torres P., Ojeda M., Sadaba I., and Granados M. L. Energy Environ. Sci. 2016, 9 (4), 1144.
(4)
Hoydonckx, H. E.; Rhijn, W. M. V.; Rhijn, W. V.; Vos, D. E. D.; Jacobs, P. A. Furfural and derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2007.
(5)
Mukherjee A., Dumont M.-J., and Raghavan V. Biomass Bioenergy 2015, 72, 143.
(6)
Liu S., Amada Y., Tamura M., Nakagawa Y., and Tomishige K. Green Chem. 2014, 16 (2), 617.
(7)
Liu S., Amada Y., Tamura M., Nakagawa Y., and Tomishige K. Catal. Sci. Technol. 2014, 4, 2535.
(8)
Liu H., Huang Z., Zhao F., Cui F., Li X., Xia C., and Chen J. Catal. Sci. Tech. 2016, 6 (3), 668.
(9)
Liu H. L., Huang Z. W., Kang H. X., Xia C. G., and Chen J. Chin. J. Cat. 2016, 37 (5), 700.
(10)
Ahn Y. C. and Han J. Bioresour. Technol. 2017, 245, 442.
(11)
Brentzel Z. J., Barnett K. J., Huang K., Maravelias C. T., Dumesic J. A., and Huber G. W. ChemSusChem 2017, 10 (7), 1351.
(12)
He J., Huang K., Barnett K. J., Krishna S. H., Alonso D. M., Brentzel Z. J., Burt S. P., Walker T., Banholzer W. F., Maravelias C. T., et al. Faraday Discuss. 2017, 202 (0), 247.
(13)
Huang K. F., Brentzel Z. J., Barnett K. J., Dumesic J. A., Huber G. W., and Maravelias C. T. ACS Sustain. Chem. Eng. 2017, 5 (6), 4699.
(14)
Sun D. L., Saito T., Yamada Y., Chen X., and Sato S. Appl. Cat. A 2017, 542, 289.
(15)
Wijaya H. W., Kojima T., Hara T., Ichikuni N., and Shimazu S. ChemCatChem 2017, 9 (14), 2869.
(16)
Cui J. L., Tan J. J., Zhu Y. L., and Cheng F. Q. ChemSusChem 2018, 11 (8), 1316.
(17)
Liu F., Liu Q. Y., Xu J. M., Li L., Cui Y. T., Lang R., Li L., Su Y., Miao S., Sun H., et al. Green Chem. 2018, 20 (8), 1770.
(18)
Zhang K., Li X. L., Chen S. Y., Xu H. J., Deng J., and Fu Y. ChemSusChem 2018, 11 (4), 726.
(19)
Schlaf M. J. Chem. Soc. Dalton Trans. 2006, (39), 4645.
(20)
Schlaf, M. Homogeneous catalysts for the hydrodeoxygenation of biomass derived carbohydrate feedstocks. In: Schlaf, M.; Zhang, Z., editors. Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion — Green Chemistry and Sustainable Technology Series. Springer Beijing, 2015; Vol. 2, pp. 13–38.
(21)
Geilen F. M. A., Engendahl B., Harwardt A., Marquardt W., Klankermayer J., and Leitner W. Angew.Chem. Int. Ed. 2010, 49 (32), 5510.
(22)
Phanopoulos A., White A. J. P., Long N. J., and Miller P. W. ACS Catal. 2015, 5 (4), 2500.
(23)
Phanopoulos A., Brown N. J., White A. J. P., Long N. J., and Miller P. W. Inorg. Chem. 2014, 53 (7), 3742.
(24)
Phanopoulos A., Miller P. W., and Long N. J. Coord. Chem. Rev. 2015, 299, 39.
(25)
Rhodes L. F., Sorato C., Venanzi L. M., and Bachechi F. Inorg. Chem. 1988, 27 (4), 604.
(26)
Xue Z. M., Ma M. G., Li Z. H., and Mu T. C. RSC Adv. 2016, 6 (101), 98874.
(27)
Guo W. W., Liu H. Y., Zhang S. Q., Han H. L., Liu H. Z., Jiang T., Han B. X., and Wua T. B. Green Chem. 2016, 18 (23), 6222.
(28)
Ren D., Song Z., Li L., Liu Y., Jin F., and Huo Z. Green Chem. 2016, 18 (10), 3075.
(29)
Atanda L., Shrotri A., Mukundan S., Ma Q., Konarova M., and Beltramini J. ChemSusChem 2015, 8 (17), 2907.
(30)
Kumalaputri A. J., Bottari G., Erne P. M., Heeres H. J., and Barta K. ChemSusChem 2014, 7 (8), 2266.
(31)
Wang T., Nolte M. W., and Shanks B. H. Green Chem. 2014, 16 (2), 548.
(32)
Saha B. and Abu-Omar M. M. Green Chem. 2014, 16 (1), 24.
(33)
Latifi E., Marchese A. D., Hulls M. C. W., Soldatov D. V., and Schlaf M. Green Chem. 2017, 19, 4666.
(34)
Piancatelli G. and Scettri A. Tetrahedron 1977, 33 (1), 69.
(35)
Piutti C. and Quartieri F. Molecules 2013, 18 (10), 12290.
(36)
Chen F., Li N., Yang X., Li L., Li G., Li S., Wang W., Hu Y., Wang A., Cong Y., et al. ACS Sustain. Chem. Eng. 2016, 4 (11), 6160.
(37)
Lane, J. Making superfuels affordable, via biofuels: the JP-10 story. BiofuelsDigest, 2013.
(38)
Li G. Y., Hou B. L., Wang A. Q., Xin X. L., Cong Y., Wang X. D., Li N., and Zhang T. Angew. Chem. Int. Ed. 2019, 58 (35), 12154.
(39)
Montgomery, D. C. Design and analysis of experiments. John Wiley & Sons, Inc., New York, Toronto, 2009.
(40)
Soravia, S.; Orth, A. Design of experiments. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
(41)
Fischer, R. A. The design of experiments. Macmillan, New York, 1935.
(42)
Scanlon J. T. and Willis D. E. J. Chromatogr. Sci. 1985, 23, 333.
(43)
Di Mondo D., Ashok D., Waldie F., Schrier N., Morrison M., and Schlaf M. ACS Catal. 2011, 1, 355.
(44)
Fawcett J., Hoye P. A. T., Kemmitt R. D. W., Law D. J., and Russell D. R. J. Chem. Soc., Dalton Trans. 1993, 2563.
(45)
Miller P. W. and White A. J. P. J. Organomet. Chem. 2010, 695 (8), 1138.
(46)
Cheng Z. W., Everhart J. L., Tsilomelekis G., Nikolakis V., Saha B., and Vlachos D. G. Green Chem. 2018, 20 (5), 997.
(47)
van Zandvoort I., Wang Y., Rasrendra C. B., van Eck E. R. H., Bruijnincx P. C. A., Heeres H. J., and Weckhuysen B. M. ChemSusChem 2013, 6 (9), 1745.
(48)
Sullivan R. J., Latifi E., Chung B. K. M., Soldatov D. V., and Schlaf M. ACS Catal. 2014, 4, 4116.
(49)
Phanopoulos A., Long N., and Miller P. J. Vis. Exp. 2015, (98), e52689.
(50)
Phanopoulos, A.; Long, N. J.; Miller, P. W., Triphosphine ligands: coordination chemistry and recent catalytic applications. In: Mingos, D. M. P., editor. Chemical Bond III: 100 Years Old and Getting Stronger. 2017; Vol. 171, pp. 31–61.
(51)
The 5:1 mixture is a preferred ratio, as it represents the azeotrope of these solvents,which could ultimately facilitate isolation of any reaction products by fractional (vacuum-)distillation.
(52)
Bandura A. V. and Lvov S. N. J. Phys. Chem. Ref. Data 2006, 35 (1), 15.
(53)
Fernández D. P., Goodwin A. R. H., Lemmon E. W., Sengers J. M. H. L., and Williams R. C. J. Phys. Chem. Ref. Data 1997, 26 (4), 1125.
(54)
Although the authors recognize that there is an ongoing discussion in the recent literature (see for example, V. Amrhein et al., Nature 567, 305 (2019). ) on the proper choice of the alpha value, we retained this “traditional cut-off” for our data presentation and analysis. Higher order interactions were not considered in the analysis, as this would require — at least — duplication of all experiments, which in light of the overall achievable yields is not justifiable resource expenditure.
(55)
Bullock R. M. Chem. Eur. J. 2004, 10 (10), 2366.
(56)
Chaplin A. B. and Dyson P. J. Inorg. Chem. 2008, 47, 381.
(57)
It can be speculated that this reality also will apply to heterogeneous catalysts system acting on furanic biomass-derived substrates.

Supplementary Material

Supplementary data (cjc-2019-0374suppla.pdf)

Information & Authors

Information

Published In

cover image Canadian Journal of Chemistry
Canadian Journal of Chemistry
Volume 99Number 2February 2021
Pages: 113 - 126

History

Received: 4 October 2019
Accepted: 22 January 2020
Accepted manuscript online: 16 March 2020
Version of record online: 16 March 2020

Permissions

Request permissions for this article.

Key Words

  1. hydrodeoxygenation
  2. hydrogenation
  3. homogeneous catalysis
  4. sugar derivatives
  5. biomass conversion
  6. diols
  7. design of experiments

Mots-clés

  1. hydrodésoxygénation
  2. hydrogénation
  3. catalyse homogène
  4. dérivés de sucres
  5. transformation de la biomasse
  6. diols
  7. plan d’expériences

Authors

Affiliations

Elise M.-J. Banz Chung
Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada.
Maryanne K. Stones
Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada.
Elnaz Latifi
Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada.
Cameron Moore
Chemistry Division, Los Alamos National Laboratory, MS K558, Los Alamos NM 87545, USA.
Andrew D. Sutton
Chemistry Division, Los Alamos National Laboratory, MS K558, Los Alamos NM 87545, USA.
Gary Umphrey
Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada.
Dmitriy Soldatov
Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada.
Marcel Schlaf [email protected]
Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada.

Notes

This paper is part of a special issue to honour Professor Robert H. Morris.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Unravelling the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol catalysed by supported RANEY® Ni–Sn alloy catalysts
2. Catalytic Transformation of the Furfural Platform into Bifunctionalized Monomers for Polymer Synthesis
3. Enhanced Hydrogenation of Carbon Dioxide to Methanol by a Ruthenium Complex with a Charged Outer-Coordination Sphere

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Chemistry

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media