The thermochemical, structural, and spectroscopic analyses of the tautomers of sulfur and selenium modified emissive nucleobases

Publication: Canadian Journal of Chemistry
24 November 2020

Abstract

In this study, density functional theory (DFT) and time dependent density functional theory (TD-DFT) are used to investigate the stabilities and spectral properties [IR, UV–vis, and two-photon absorption (2PA)] of two sets of modified RNA nucleobase tautomers. The modifications introduce either a sulfur or selenium atom to form an isothiazolo[4,3-d]pyrimidine or isoselenazolo[4,3-d]pyrimidine heterocyclic core, respectively. The relative stabilities of both sets of modified tautomers determined with B3LYP/6-31++G(d,p) reveal that in water (with a polarizable continuum model), the 6-keto-2-amino tautomer of guanine and the rare 4-imino-2-keto tautomer of cytosine may be present at significant populations, whereas the 6-enol-2-amino tautomer of guanine is more common in the gas phase. The identification of these modified tautomers is possible due to the natural differences in their vibrational modes and hence IR spectra. Furthermore, the photophysical properties of both these sets of modified tautomers indicate that excitation and emission energies are shifted relative to their more abundant form in both one photon absorption and emission and 2PA spectra, as determined at the B3LYP/6-31++G(d,p) and CAM-B3LYP/aug-cc-pVDZ levels of theory, respectively. Even though the 2PA cross sections in water for all of the species are small (0.3–2.3 GM), the modified cytosine tautomer shows promise, as its cross section is larger than the more dominant form. The spectral separation between the dominant form and the tautomers of isoselenazole and isothiazole modified cytosine and guanine are relatively similar, suggesting both modifications could be useful in elucidating the tautomers from their more abundant counterparts.

Résumé

Dans le cadre de la présente étude, nous avons employé la théorie de la fonctionnelle de la densité (DFT) et la théorie de la fonctionnelle de la densité dépendante du temps (TD DFT) pour étudier la stabilité et les propriétés spectrales [IR, UV-visible et absorption de deux photons (ADP)] de deux ensembles de tautomères de bases nucléiques d’ARN modifiées. Les modifications consistaient à introduire un atome soit de soufre ou de sélénium pour former un noyau hétérocyclique isothiazolo[4,3 d]pyrimidine ou isosélénazolo[4,3 d]pyrimidine, respectivement. Les stabilités relatives des deux ensembles de tautomères modifiés déterminées au niveau B3LYP/6-31++G(d,p) de la théorie ont révélé que, dans l’eau (avec un modèle de continuum polarisable), les populations du tautomère 6 céto-2-amino de la guanine et du tautomère rare 4 imino-2-céto de la cytosine pourraient être significatives, tandis que le tautomère 6 énol-2-amino de la guanine est plus commun dans la phase gazeuse. L’identification de ces tautomères modifiés est possible grâce aux différences naturelles de leurs modes vibratoires et, par conséquent, de leurs spectres IR. De plus, les propriétés photophysiques de ces deux ensembles de tautomères modifiés montrent, par rapport à leur forme plus abondante, un déplacement des énergies d’excitation et d’émission dans les spectres d’absorption et d’émission à un photon et à deux photons (ADP), d’après les valeurs déterminées aux niveaux B3LYP/6-31++G(d,p) et CAMB3LYP/aug-cc-pVDZ de la théorie, respectivement. Même si les valeurs des sections efficaces d’ADP dans l’eau pour toutes les espèces sont peu élevées (0,3–2,3 GM), le tautomère de la cytosine modifiée semble prometteur, étant donné que sa valeur de section efficace est plus grande que celle de la forme prédominante. La séparation entre les signaux spectraux de la forme dominante et ceux des tautomères de la cytosine et de la guanine modifiées en isosélénazole et en isothiazole est relativement similaire, ce qui laisse supposer que les deux modifications pourraient être utiles pour distinguer les formes tautomériques de leurs homologues plus abondants. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

(1)
Cochrane J. C. and Strobel S. A. RNA. 2008, 14, 993.
(2)
Li D., Fedeles B. I., Singh V., Peng C. S., Silvestre K. J., Simi A. K., Simpson J. H., Tokmakoff A., and Essigmann J. M. Proc. Natl. Acad. Sci. U S A. 2014, 111, E3252.
(3)
Singh V., Peng C. S., Li D., Mitra K., Silvestre K. J., Tokmakoff A., and Essigmann J. M. ACS Chem. Biol. 2014, 9, 227.
(4)
Dreyfus M., Bensaude O., Dodin G., and Dubois J. E. J. Am. Chem. Soc. 1976, 98, 6338.
(5)
Raczyska E. D., Kosiska W., Omiaowski B., and Gawinecki R. Chem. Rev. 2005, 105, 3561.
(6)
Peng C. S., Baiz C. R., and Tokmakoff A. Proc. Natl. Acad. Sci. USA. 2013, 110, 9243.
(7)
Mons M., Piuzzi F., Dimicoli I., Gorb L., and Leszczynski J. J. Phys. Chem. A. 2006, 110, 10921.
(8)
Mons M., Dimicoli I., Piuzzi F., Tardivel B., and Elhanine M. J. Phys. Chem. A. 2002, 106, 5088.
(9)
Plekan O., Feyer V., Richter R., Coreno M., Vall-Llosera G., Prince K. C., Trofimov A. B., Zaytseva I. L., Moskovskaya T. E., Gromov E. V., and Schirmer J. J. Phys. Chem. A. 2009, 113, 9376.
(10)
Burova T. G., Ermolenkov V. V., Ten G. N., Kadrov D. M., Nurlygaianova M. N., Baranov V. I., and Lednev I. K. J. Phys. Chem. A. 2013, 117, 12734.
(11)
Sekov P., Marek R., Malikov K., Kolehmainen E., Hockov D., Hocek M., and Sklen V. Tetrahedron Lett. 2004, 45, 6259.
(12)
Szymanski E. S., Kimsey I. J., and Al-Hashimi H. M. J. Am. Chem. Soc. 2017, 139, 4326.
(13)
Kimsey I. J., Szymanski E. S., Zahurancik W. J., Shakya A., Xue Y., Chu C.-C., Sathyamoorthy B., Suo Z., and Al-Hashimi H. M. Nature. 2018, 554, 195.
(14)
Chen H. and Li S. J. Phys. Chem. A. 2006, 110, 12360.
(15)
Crespo-Hernndez C. E., Cohen B., Hare P. M., and Kohler B. Chem. Rev. 2004, 104, 1977.
(16)
Xu W., Chan K. M., and Kool E. T. Nature Chem. 2017, 9, 1043.
(17)
Shin D., Sinkeldam R. W., and Tor Y. J. Am. Chem. Soc. 2011, 133, 14912.
(18)
Rovira A. R., Fin A., and Tor Y. J. Am. Chem. Soc. 2015, 137, 14602.
(19)
Samanta P. K., Manna A. K., and Pati S. K. J. Phys. Chem. B. 2012, 116, 7618.
(20)
Gedik M. and Brown A. Photobiol. A. 2013, 259, 25.
(21)
Chawla M., Poater A., Oliva R., and Cavallo L. Phys. Chem. Chem. Phys. 2016, 18, 18045.
(22)
Zhang L., Kong X., Wang M., and Zheng M. Int. J. Quantum Chem. 2017, 117, e25377.
(23)
Sholokh M., Improta R., Mori M., Sharma R., Kenfack C., Shin D., Voltz K., Stote R. H., Zaporozhets O. A., Botta M., Tor Y., and Mèly Y. Angew. Chem. Int. Ed. 2016, 55, 7974.
(24)
Chawla M., Poater A., Besalú-Sala P., Kalra K., Oliva R., and Cavallo L. Phys. Chem. Chem. Phys. 2018, 20, 7676.
(25)
Sun H., Sheng J., Hassan A. E. A., Jiang S., Gan J., and Huang Z. Nucleic Acids Res. 2012, 40, 5171.
(26)
Nuthanakanti A., Boerneke M. A., Hermann T., and Srivatsan S. G. Angew. Chem. Int. Ed. 2017, 56, 2640.
(27)
Farrell K. M., Brister M. M., Pittelkow M., Sølling T. I., and Crespo-Hernández C. E. J. Am. Chem. Soc. 2018, 140, 11214.
(28)
Fang Y.-G., Peng Q., Fang Q., Fang W., and Cui G. ACS Omega. 2019, 4, 9769.
(29)
Westhof E. FEBS Lett. 2014, 588, 2464. Paris.
(30)
Frisch, M. J. Gaussian Inc. Wallingford CT.
(31)
Tomasi J., Mennucci B., and Cammi R. Chem. Rev. 2005, 105, 2999.
(32)
Becke A. D. J. Chem. Phys. 1993, 98, 5648.
(33)
Lee C., Yang W., and Parr R. G. Phys. Rev. B. 1988, 37, 785.
(34)
Stephens P. J., Devlin F. J., Chabalowski C. F., and Frisch M. J. J. Phys. Chem. 1994, 98, 11623.
(35)
Ditchfield R., Hehre W. J., and Pople J. A. J. Chem. Phys. 1971, 54, 724.
(36)
Hehre W. J., Ditchfield R., and Pople J. A. J. Chem. Phys. 1972, 56, 2257.
(37)
Hariharan P. C. and Pople J. A. Theoret. Chim. Acta. 1973, 28, 213.
(38)
Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., and Curtiss L. A. J. Comput. Chem. 2001, 22, 976.
(39)
Francl M. M., Pietro W. J., Hehre W. J., Binkley J. S., Gordon M. S., DeFrees D. J., and Pople J. A. J. Chem. Phys. 1982, 77, 3654.
(40)
Gordon M. S., Binkley J. S., Pople J. A., Pietro W. J., and Hehre W. J. J. Am. Chem. Soc. 1982, 104, 2797.
(41)
Gedik M. and Brown A. Phys. Chem. Chem. Phys. 2020. Submitted.
(42)
Samanta P. K. and Pati S. K. Phys. Chem. Chem. Phys. 2015, 17, 10053.
(43)
Yanai T., Tew D. P., and Handy N. C. Chem. Phys. Lett. 2004, 393, 51.
(44)
Dunning T. H. J. Chem. Phys. 1989, 90, 1007.
(45)
Friese D. H., Hättig C., and Ruud K. Phys. Chem. Chem. Phys. 2012, 14, 1175.
(46)
Aidas K. et al. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 269.
(47)
Aidas, K., et al. Dalton, A Molecular Electronic Structure Program, Release v2017.alpha 2017.
(48)
Monson P. R. and McClain W. M. J. Chem. Phys. 1970, 53, 29.
(49)
McClain W. M. J. Chem. Phys. 1971, 55, 2789.
(50)
Choi M. Y. and Miller R. E. J. Am. Chem. Soc. 2006, 128, 7320.
(51)
Bazs G., Tarczay G., Fogarasi G., and Szalay P. G. Phys. Chem. Chem. Phys. 2011, 13, 6799.
(52)
Szczesniak M., Szczepaniak K., Kwiatkowski J. S., KuBulat K., and Person W. B. J. Am. Chem. Soc. 1988, 110, 8319.
(53)
Nowak M., Lapinski L., and Fulara J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1989, 45, 229.
(54)
Florin J., Baumruk V., and Leszczyski J. J. Phys. Chem. 1996, 100, 5578.
(55)
Gorb L. and Leszczynski J. Int. J. Quant. Chem. 1997, 65, 759.
(56)
Kwiatkowski J. S. and Leszczyński J. J. Phys. Chem. 1996, 100, 941.
(57)
Singh V., Fedeles B. I., and Essigmann J. M. RNA. 2015, 21, 1.
(58)
Cavallo, L. Personal Communication, 2020; Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology.
(59)
Lane R. and Magennis S. RSC Adv. 2012, 2, 11397.
(60)
Lane R. S. K., Jones R., Sinkeldam R. W., Tor Y., and Magennis S. W. Chem. Phys. Chem. 2014, 15, 867.
(61)
Nobis D., Fisher R. S., Simmermacher M., Hopkins P. A., Tor Y., Jones A. C., and Magennis S. W. J. Phys. Chem. Lett. 2019, 10, 5008.
(62)
Brand L., Eggeling C., Zander C., Drexhage K. H., and Seidel C. A. M. J. Phys. Chem. A, 1997, 101, 4313.
(63)
Katilius E. and Woodbury N. W. J. Biomed. Opt. 2006, 11, 1.
(64)
Mikhaylov A., de Reguardati S., Pahapill J., Callis P. R., Kohler B., and Rebane A. Biomed. Opt. Express. 2018, 9, 447.

Supplementary Material

Supplementary data (cjc-2020-0294suppla.pdf)

Information & Authors

Information

Published In

cover image Canadian Journal of Chemistry
Canadian Journal of Chemistry
Volume 99Number 4April 2021
Pages: 390 - 396

History

Received: 17 July 2020
Accepted: 8 November 2020
Published online: 24 November 2020

Permissions

Request permissions for this article.

Key Words

  1. TD-DFT
  2. RNA
  3. nucleobases
  4. tautomers
  5. emissive
  6. selenium

Mots-clés

  1. TD-DFT
  2. ARN
  3. bases nucléiques
  4. tautomères
  5. émissif
  6. sélénium

Authors

Affiliations

Shyam Parshotam
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
Megan Joy
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
Maria Rossano-Tapia
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
V. A. Mora-Gomez
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Chemistry

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media