Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

A comprehensive investigation of the intermolecular interactions between CH2N2 and X12Y12 (X = B, Al, Ga; Y = N, P, As) nanocages

Publication: Canadian Journal of Chemistry
6 July 2021


In this paper, we have theoretically determined the possibility of adsorption of the gaseous CH2N2 molecule on the surface of X12Y12 nanocages, where X = B, Al, Ga and Y = N, P, As. The electronic structure calculations have been performed by density functional theory (DFT) using four functionals (i.e., B3LYP-D3, M06-2X, ωB97XD, and CAM-B3LYP), together with the 6-311G(d) basis function. We find that the adsorption of CH2N2 on top of the X–Y bond of the nanocage is the most preferred site for adsorption. The adsorption process is accompanied by a charge-transfer phenomenon, which results in a strong bond between the terminal N atom of diazomethane and the X atom of the nanocage. This gives rise to significant changes in the highest and lowest occupied molecular orbital (HOMO and LUMO, respectively) energies and thus attribute properties to the nanocages that enable them to act as building blocks of CH2N2 sensing materials.

Graphical Abstract


Dans le cadre des présents travaux, nous avons réalisé une étude théorique pour déterminer la possibilité d’adsorption de la molécule de diazométhane (CH2N2) gazeux à la surface de nanocages de formule X12Y12, où X = B, Al, Ga et Y = N, P, As. Nous avons modélisé la structure électronique selon des calculs de la théorie de la fonctionnelle de la densité (DFT), dans lesquels nous avons utilisé quatre fonctionnelles (soit B3LYPD3, M062X, ωB97XD et CAMB3LYP) ainsi que la base 6311G(d). Nos résultats montrent que la liaison X–Y de la nanocage est le site d’adsorption privilégié du CH2N2. Le processus d’adsorption est accompagné d’un phénomène de transfert de charge, qui se traduit par une forte liaison entre l’atome d’azote terminal du diazométhane et l’atome X de la nanocage. Ce phénomène donne lieu à des changements importants dans les énergies des orbitales moléculaires frontières (HOMO et LUMO) et confère donc aux nanocages des propriétés qui en font d’éventuels constituants de base pour former des matériaux de détection du CH2N2. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.


Dallinger D. and Kappe C.O. Nat. Protoc. 2017, 12 (10), 2138.
National Center for Biotechnology Information, U.S. National Library of Medicine. 2021.
Schoental R. and Magee P. Br. J. Cancer 1962, 16 (1), 92.
Centers for Disease Control and Prevention. 2020.
Proctor L. D. and Warr A. J. Org. Process Res. Dev. 2002, 6 (6), 884.
Isaac N., Ngene P., Westerwaal R., Gaury J., Dam B., Schmidt-Ott A., and Biskos G. Sensors and Actuators B: Chemical. 2015, 221, 290.
Nemati-Kande E., Abbasi M., and Doust Mohammadi M. ChemistrySelect. 2018, 3 (34), 9833.
Nemati-Kande E., Abbasi M., and Mohammadi M. D. ChemistrySelect. 2019, 4 (8), 2453.
Mohammadi M. D. and Abdullah H. Y. J. Mol. Model. 2020, 26 (10), 1.
Mohammadi M. D. and Abdullah H. Y. Theor. Chem. Acc. 2020, 139 (10), 1.
Mohammadi M. D., Salih I. H., and Abdullah H. Y. J. Comp. Biophys. Chem. 2020, 1.
Nemati-Kande E., Abbasi M., and Mohammadi M. D. J. Mol. Struct. 2020, 1199, 126962.
Mohammadi M. D. and Abdullah H. Y. Struct. Chem. 2021, 32 (1), 481.
Solimannejad M., Kamalinahad S., and Shakerzadeh E. Mol. Phys. 2018, 116 (3), 414.
Mohammadi M. D., Abdullah H. Y., Bhowmick S., and Biskos G. Computational and Theoretical Chemistry, 2021, 1198, 113168.
Oku T., Nishiwaki A., and Narita I. Sci. Tech. Adv. Mater. 2004, 5 (5–6), 635.
Vessally E., Ahmadi E., Alibabaei S., Esrafili M. D., and Hosseinian A. Monatsh. Chem. 2017, 148 (10), 1727.
Peyghan A. A. and Soleymanabadi H. Curr. Sci. 2015, 1910–1914.
Beheshtian J., Bagheri Z., Kamfiroozi M., and Ahmadi A. Microelectron. J. 2011, 42 (12), 1400.
Quiñonero D., Frontera A., and Deyà P.M. J. Phys. Chem. C. 2012, 116 (39), 21083.
Baei M. T. Heteroatom Chem. 2013, 24 (6), 476.
Beheshtian J., Kamfiroozi M., Bagheri Z., and Ahmadi A. Comp. Mater. Sci. 2012, 54, 115.
Cui H., Yong Y., Jiang H., Yang L., Wang S., Zhang G., Guo M., and Li X. Mater. Res. Express. 2017, 4 (1), 015009.
Farrokhpour H., Jouypazadeh H., and Vakili Sohroforouzani S. Mol. Phys. 2020, 118 (4), 1626506.
Rad A. S. and Ayub K. J. Alloys Compd. 2016, 672, 161.
Hohenberg P. and Kohn W. Phys. Rev. 1964, 136 (3B), B864.
Kohn W. and Sham L.J. Phys. Rev. 1965, 140 (4A), A1133.
Pople J. A., Gill P. M., and Johnson B. G. Chem. Phys. Lett. 1992, 199 (6), 557.
Bickelhaupt F. M. and Baerends E. J. Rev. Comput. Chem. 2000, 15, 1.
Yanai T., Tew D. P., and Handy N. C. Chem. Phys. Lett. 2004, 393 (1–3), 51.
Kobayashi R. and Amos R. D. Chem. Phys. Lett. 2006, 420 (1-3), 106.
Zhao Y. and Truhlar D. G. Theor. Chem. Account. 2008, 120 (1-3), 215.
Chai J.-D. and Head-Gordon M. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615.
Grimme S. J. Comput. Chem. 2006, 27 (15), 1787.
Grimme S., Antony J., Ehrlich S., and Krieg H. J. Chem. Phys. 2010, 132 (15), 154104.
Grimme S., Ehrlich S., and Goerigk L. J. Comput. Chem. 2011, 32 (7), 1456.
Goerigk L. and Grimme S. Phys. Chem. Chem. Phys. 2011, 13 (14), 6670.
Dennington, R., Keith, T. A., and Millam, J. M. Semichem Inc. Shawnee Mission KS 2016,
Baker J. J. Comput. Chem. 1987, 8 (5), 563.
Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Petersson, G., and Nakatsuji, H. Gaussian 16. Gaussian, Inc. Wallingford, CT. 2016.
Lu T. and Chen F. J. Comput. Chem. 2012, 33 (5), 580.
O'boyle N. M., Tenderholt A. L., and Langner K. M. J. Comput. Chem. 2008, 29 (5), 839.
Boys S. F. and Bernardi F. Mol. Phys. 1970, 19 (4), 553.
Alkorta I., Trujillo C., Elguero J., and Solimannejad M. Comput. Theor. Chem. 2011, 967 (1), 147.
Hellwege, K.-H. and Hellwege, A. M. Structure data of free polyatomic molecules. Springer Verlag 1976.
Foresman, J., and Frisch, E. Exploring Chemistry with Electronic Structure Methods. 2nd Edition, Gaussian Inc., Pittsburgh, Pennsylvania. 1996.
Parr, R. G., and Yang, W. Horizons of Quantum Chemistry. Springer Berlin, Germany. 1980.
von Szentpály L. The J. Phys. Chem. A. 1998, 102 (52), 10912.
Parr R. G., Szentpály L. V., and Liu S. J. Am. Chem. Soc. 1999, 121 (9), 1922.
Chattaraj P. and Roy D. Chem. Rev. 2007, 107.
Bredas J.-L. Materials Horizons. 2014, 1 (1), 17.
Foster A. J. and Weinhold F. J. Am. Chem. Soc. 1980, 102 (24), 7211.
Weinhold F. and Landis C. R. Chemistry Education Research and Practice. 2001, 2 (2), 91.
Weinhold, F. Discovering chemistry with natural bond orbitals. John Wiley & Sons 2012.
Mulliken R. S. The J. Chem. Phys. 1955, 23 (10), 1833.
Mayer I. Chem. Phys. Lett. 1983, 97 (3), 270.
Bridgeman A. J., Cavigliasso G., Ireland L. R., and Rothery J. J. Chem. Soc, Dalton Trans. 2001, (14), 2095.
Mayer I. Chem. Phys. Lett. 2012, 544, 83.
Wiberg K. B. Tetrahedron. 1968, 24 (3), 1083.
Sizova O. V., Skripnikov L. V., and Sokolov A. Y. J. Mol. Struct.: THEOCHEM. 2008, 870 (1–3), 1.
Mayer I. and Salvador P. Chem. Phys. Lett. 2004, 383 (3–4), 368.
Lu T. and Chen F. J. Phys. Chem. A. 2013, 117 (14), 3100.
Matta, C. F., Hydrogen–Hydrogen Bonding: The Non-Electrostatic Limit of Closed-Shell Interaction Between Two Hydro. In Hydrogen Bonding—New Insights, Springer 2006, pp. 337–375.
Bohórquez H. J., Boyd R. J., and Matta C. F. J. Phys. Chem. A. 2011, 115 (45), 12991.
Grabowski S. J. J. Phys. Chem. A. 2012, 116 (7), 1838.
Johnson E. R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., and Yang W. J. Am. Chem. Soc. 2010, 132 (18), 6498.
Contreras-García J., Johnson E. R., Keinan S., Chaudret R., Piquemal J.-P., Beratan D. N., and Yang W. J. Chem. Theory Comput. 2011, 7 (3), 625.

Supplementary Material

Supplementary data (cjc-2020-0473suppla.pdf)

Information & Authors


Published In

cover image Canadian Journal of Chemistry
Canadian Journal of Chemistry
e-First • September 2021
Pages: 733 - 741


Received: 17 November 2020
Accepted: 8 March 2021
Version of record online: 6 July 2021


Request permissions for this article.

Key Words

  1. diazomethane
  2. nanocage
  3. DFT
  4. NBO
  5. QTAIM


  1. diazomethane
  2. nanocage
  3. théorie de la fonctionnelle de la densité
  4. orbitales naturelles de liaison
  5. théorie quantique des atomes dans les molecules



Mohsen Doust Mohammadi
School of Chemistry, College of Science, University of Tehran, Tehran 14176, Iran.
Hewa Y. Abdullah [email protected]
Physics Education Department, Faculty of Education, Tishk International University, Erbil 44001, Iraq.
Somnath Bhowmick
Climate & Atmosphere Research Centre, The Cyprus Institute, 20 K. Kavafi Street, Nicosia 2121, Cyprus.
George Biskos
Climate & Atmosphere Research Centre, The Cyprus Institute, 20 K. Kavafi Street, Nicosia 2121, Cyprus.
Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, Netherlands.


Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Adsorbing CNCl on pristine, C-, and Al-doped boron nitride nanotubes: A density functional theory study
2. Interaction of the Serine Amino Acid with BNNT, BNAlNT, and BC2NNT
3. Theoretical investigation of intermolecular interactions between CNT, SiCNT and SiCGeNT nanomaterials with vinyl chloride molecule: A DFT, NBO, NCI, and QTAIM study
4. Adsorption properties of metal functionalized fullerene (C 59 Au, C 59 Hf, C 59 Ag, and C 59 Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
5. Sarin chemical warfare agent detection by Sc-decorated XN nanotubes (X = Al or Ga)
6. Detection of Carbon, Sulfur, and Nitrogen Dioxide Pollutants with a 2D Ca 12 O 12 Nanostructured Material
7. Bromochlorodifluoromethane interaction with pristine and doped BN nanosheets: A DFT study
8. Trapping of CO, CO2, H2S, NH3, NO, NO2, and SO2 by polyoxometalate compound
9. Intermolecular Interactions between Serine and C60, C59Si, and C59Ge: a DFT Study
10. Interaction of Fluorouracil drug with boron nitride nanotube, Al doped boron nitride nanotube and BC2N nanotube
11. Ab initio investigation for the adsorption of acrolein onto the surface of C60, C59Si, and C59Ge: NBO, QTAIM, and NCI analyses
12. Weak intermolecular interactions of cysteine on BNNT, BNAlNT and BC2NNT: a DFT investigation
13. Interaction of halomethane CH3Z (Z = F, Cl, Br) with X12Y12 (X = B, Al, Ga & Y = N, P, As) nanocages
14. DFT Study for Adsorbing of Bromine Monochloride onto BNNT (5,5), BNNT (7,0), BC 2 NNT (5,5), and BC 2 NNT (7,0)
15. Non-covalent interactions of cysteine onto C60, C59Si, and C59Ge: a DFT study

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Canadian Journal of Chemistry

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media