Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Arrayed and entangled silicon nanowires using Au nanoparticle catalysts prepared by pulsed laser-induced dewetting

Publication: Canadian Journal of Chemistry
18 September 2023

Abstract

The use of pulsed laser-induced dewetting (PLiD) is reported as a novel approach in the fabrication of Au nanoparticle (NP) catalytic arrays for the growth of Si nanowires (NWs) by chemical vapor deposition using SiCl4 in the presence of H2. On polished Si substrates, PLiD generates Au NP catalysts with long-range order and narrow size distributions. It has been shown that the monodispersed distribution of Au NPs provides consistent diameter control of the as-grown Si NWs. A systematic exploration of the Si NW synthesis time, temperature, and gas flow rates illustrates a level of tunability in terms of morphology, be it arrayed or entangled Si NWs, with varying experimental parameters. An investigation of the effect of growth temperature also showed that Si NWs can be synthesized at temperatures as low as 700 °C when using SiCl4 as the precursor. The use of porous Si substrates enabled direct observation of the diameter-dependent growth due to the simultaneous presence of three Au NP size distributions. Growth from the small- and medium-sized Au NP catalysts occurred first, followed by that from the large-sized Au NPs, which was only observed at extended times or high SiCl4 flow rates. The delayed onset of growth from the large-sized Au NPs is due to the longer time to achieve Si super-saturation of larger catalyst NPs. The morphology and diameter control of the as-grown Si NWs reported in this work makes this approach potentially useful toward applications such as nanoelectronics, sensors, and lithium ion battery electrodes depending on the desired morphology.

Graphical Abstract

Get full access to this article

View all available purchase options and get full access to this article.

References

(1)
Cui Y.; Zhong Z. H.; Wang D. L.; Wang W. U.; Lieber C. M. Nano Lett. 2003, 3, 149.
(2)
Schmidt V.; Riel H.; Senz S.; Karg S.; Riess W.; Gosele U. Small, 2006, 2, 85.
(3)
Patolsky F.; Zheng G. F.; Lieber C. M. Nat. Protoc. 2006, 1, 1711.
(4)
Zhou X. T.; Hu J. Q.; Li C. P.; Ma D. D. D.; Lee C. S.; Lee S. T. Chem. Phys. Lett. 2003, 369, 220.
(5)
Sivakov V.; Andra G.; Gawlik A.; Berger A.; Plentz J.; Falk F.; Christiansen S. H. Nano Lett. 2009, 9, 1549.
(6)
Tian B.; Kempa T. J.; Lieber C. M. Chem. Soc. Rev. 2009, 38, 16.
(7)
McDowell M. T.; Lee S. W.; Nix W. D.; Cui Y. Adv. Mater. 2013, 25, 4966.
(8)
Su X.; Wu Q. L.; Li J. C.; Xiao X. C.; Lott A.; Lu W. Q.; Sheldon B. W.; Wu J. Adv. Energy Mater. 2014, 4, 1300882.
(9)
Lefeuvre E.; Kim K. H.; He Z. B.; Maurice J. L.; Chatelet M.; Pribat D.; Cojocaru C. S. Thin Solid Films, 2011, 519, 4603.
(10)
Goldberger J.; Hochbaum A. I.; Fan R.; Yang P. D. Nano Lett. 2006, 6, 973.
(11)
Peng K. Q.; Xu Y.; Wu Y.; Yan Y. J.; Lee S. T.; Zhu J. Small, 2005, 1, 1062.
(12)
Hu L.; Chen G. Nano Lett. 2007, 7, 3249.
(13)
Hofmann S.; Ducati C.; Neill R. J.; Piscanec S.; Ferrari A. C.; Geng J.; Dunin-Borkowski R. E.; Robertson J. J. Appl. Phys. 2003, 94, 6005.
(14)
Kayes B. M.; Filler M. A.; Putnam M. C.; Kelzenberg M. D.; Lewis N. S.; Atwater H. A. Appl. Phys. Lett. 2007, 91, 103110.
(15)
Tan B. J. Y.; Sow C. H.; Koh T. S.; Chin K. C.; Wee A. T. S.; Ong C. K. J. Phys. Chem. B, 2005, 109, 11100.
(16)
Huang Z. P.; Zhang X. X.; Reiche M.; Liu L. F.; Lee W.; Shimizu T.; Senz S.; Gosele U. Nano Lett. 2008, 8, 3046.
(17)
Peng K. Q.; Wu Y.; Fang H.; Zhong X. Y.; Xu Y.; Zhu J. Angew. Chem. Int. Ed. 2005, 44, 2737.
(18)
Morales A. M.; Lieber C. M. Science, 1998, 279, 208.
(19)
Yang Y. H.; Wu S. J.; Chin H. S.; Lin P. I.; Chen Y. T. J. Phys. Chem. B, 2004, 108, 846.
(20)
He R. R.; Yang P. D. Nat. Nanotechnol. 2006, 1, 42.
(21)
Hannon J. B.; Kodambaka S.; Ross F. M.; Tromp R. M. Nature, 2006, 440, 69.
(22)
Schubert L.; Werner P.; Zakharov N. D.; Gerth G.; Kolb F. M.; Long L.; Gosele U.; Tan T. Y. Appl. Phys. Lett. 2004, 84, 4968.
(23)
Fuhrmann B.; Leipner H. S.; Hoche H. R.; Schubert L.; Werner P.; Gosele U. Nano Lett. 2005, 5, 2524.
(24)
Heitsch A. T.; Fanfair D. D.; Tuan H. Y.; Korgel B. A. J. Am. Chem. Soc. 2008, 130, 5436.
(25)
Holmes J. D.; Johnston K. P.; Doty R. C.; Korgel B. A. Science, 2000, 287, 1471.
(26)
Li C. P.; Lee C. S.; Ma X. L.; Wang N.; Zhang R. Q.; Lee S. T. Adv. Mater. 2003, 15, 607.
(27)
Wagner R. S.; Ellis W. C. Appl. Phys. Lett. 1964, 4, 89.
(28)
Schmidt V.; Wittemann J. V.; Senz S.; Gosele U. Adv. Mater. 2009, 21, 2681.
(29)
Cui Y.; Lauhon L. J.; Gudiksen M. S.; Wang J. F.; Lieber C. M. Appl. Phys. Lett. 2001, 78, 2214.
(30)
Lombardi I.; Hochbaum A. I.; Yang P. D.; Carraro C.; Maboudian R. Chem. Mater. 2006, 18, 988.
(31)
Hochbaum A. I.; Fan R.; He R. R.; Yang P. D. Nano Lett. 2005, 5, 457.
(32)
Yu J. Y.; Chung S. W.; Heath J. R. J. Phys. Chem. B, 2000, 104, 11864.
(33)
Sharma S.; Kamins T. I.; Williams R. S. Appl. Phys. A, 2005, 80, 1225.
(34)
Oh Y. J.; Kim J. H.; Thompson C. V.; Ross C. A. Nanoscale, 2013, 5, 401.
(35)
Owusu-Ansah E.; Horwood C. A.; El-Sayed H. A.; Birss V. I.; Shi Y. J. Appl. Phys. Lett. 2015, 106, 203103.
(36)
Owusu-Ansah E.; Birss V. I.; Shi Y. J. J. Phys. Chem. C, 2020, 124, 23387.
(37)
Fulton A. J.; Kollath V. O.; Karan K.; Shi Y. J. Nanoscale Adv. 2020, 2, 896.
(38)
Colli A.; Fasoli A.; Beecher P.; Servati P.; Pisana S.; Fu Y.; Flewitt A. J.; Milne W. I.; Robertson J.; Ducati C.; De Franceschi S.; Hofmann S.; Ferrari A. C. J. Appl. Phys. 2007, 102, 034302.
(39)
Choi T.; Kim H.; Kim D.; Cheon T.; Kim S. J. Korean Phys. Soc. 2011, 59, 485.
(40)
Fulton A. J.; Kollath V. O.; Karan K.; Shi Y. J. J. Appl. Phys. 2018, 124, 095701.
(41)
Fulton A. J.PhD Thesis, University of Calgary, 2020. Available from https://prism.ucalgary.ca.
(42)
Yadav A.; Fu B.; Bonvicini S. N.; Ly L. Q.; Jia Z.; Shi Y. J. Nanomaterials, 2022, 12, 2589.
(43)
Jeong H.; Park T. E.; Seong H. K.; Kim M.; Kim U.; Choi H. J. Chem. Phys. Lett. 2009, 467, 331.
(44)
Dubrovskii V. G.; Sibirev N. V.; Cirlin G. E.; Soshnikov I. P.; Chen W. H.; Larde R.; Cadel E.; Pareige P.; Xu T.; Grandidier B.; Nys J. P.; Stievenard D.; Moewe M.; Chuang L. C.; Chang-Hasnain C. Phys. Rev. B, 2009, 79, 205316.
(45)
Schmidt V.; Senz S.; Gosele U. Phys. Rev. B, 2007, 75, 045335.
(46)
Wang N.; Cai Y.; Zhang R. Q. Mater. Sci. Eng. R Rep. 2008, 60, 1.
(47)
Pinion C. W.; Nenon D. P.; Christesen J. D.; Cahoon J. F. ACS Nano, 2014, 8, 6081.
(48)
Li B. B.; Yu D. P.; Zhang S. L. Phys. Rev. B, 1999, 59, 1645.
(49)
Wang R.-P.; Zhou G.-W.; Liu Y.-l.; Pan S.-H.; Zhang H.-Z.; Yu D.-P.; Zhang Z. Phys. Rev. B, 2000, 61, 16827.
(50)
Liu J.; Niu J.; Yang D.; Yan M.; Sha J. Phys. E, 2004, 23, 221.
(51)
Pinion C. W.; Christesen J. D.; Cahoon J. F. J. Mater. Chem. C, 2016, 4, 3890.
(52)
Dhalluin F.; Baron T.; Ferret P.; Salem B.; Gentile P.; Harmand J.-C. Appl. Phys. Lett. 2010, 96, 133109.
(53)
Givargizov E. I. J. Cryst. Growth, 1975, 31, 20.
(54)
Fortuna S. A.; Li X. Semicond. Sci. Technol. 2010, 25, 024005.
(55)
Homma Y. Catalysts, 2014, 4, 38.
(56)
Ghorannevis Z.; Kato T.; Kaneko T.; Hatakeyama R. J. Am. Chem. Soc. 2010, 132, 9570.

Information & Authors

Information

Published In

cover image Canadian Journal of Chemistry
Canadian Journal of Chemistry
Volume 102Number 1January 2024
Pages: 17 - 26

History

Received: 8 April 2023
Accepted: 23 June 2023
Accepted manuscript online: 26 July 2023
Version of record online: 18 September 2023

Data Availability Statement

Data generated or analyzed during this study are provided in full within the published article.

Permissions

Request permissions for this article.

Key Words

  1. silicon nanowires
  2. chemical vapor deposition
  3. diameter control
  4. Au nanoparticle catalysts
  5. pulsed laser-induced dewetting

Authors

Affiliations

Alison Joy Fulton
Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
Author Contributions: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, and Writing – review & editing.
Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
Author Contributions: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation, and Writing – review & editing.
Yujun Shi served as an Associate Editor at the time of manuscript review and acceptance; peer review and editorial decisions regarding this manuscript were handled by another Editorial Board Member.

Author Contributions

Conceptualization: AJF, YS
Data curation: AJF, YS
Formal analysis: AJF
Funding acquisition: YS
Investigation: AJF, YS
Methodology: AJF, YS
Project administration: YS
Supervision: YS
Validation: YS
Writing – original draft: AJF
Writing – review & editing: AJF, YS

Competing Interests

The authors declare that there is no competing interest.

Funding Information

University of Calgary: VPR Seed Grant
Natural Sciences and Engineering Research Council of Canada (NSERC): Discovery Grant

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Platinum Nanoparticle Formation by Pulsed Laser-induced Dewetting and Its Application as Catalyst in Silicon Nanowire Growth
2. Platinum-Catalyzed Silicon Nanowire Growth─Evidence for a Switch from Vapor–Liquid–Solid to Vapor–Solid–Solid Mechanism with Platinum Nanoparticle Size

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Chemistry

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media