A relative stability scale of nitrogen donor ligand ruthenium complexes based on their stability constants calculated from first principles by DFT methods

Publication: Canadian Journal of Chemistry
17 October 2024

Abstract

Using DFT calculations (M06/def2-TZVP/SMD solvent model) a relative stability scale is established from first principles for a series of iron and ruthenium complexes with ligand frameworks based on chelating pyridine- and pyrrole-type (porphyrin and phthalocyanine) ligands by determining the equilibrium constants for the complex formation reactions [M(H2O)6]2+ + nL → [M(L)n(H2O)m]2+ + (6 − m) H2O; M=Fe, Ru in aqueous solution through Hess's law and the van't Hoff equation. For a subset of the iron complexes, comparison against the available experimental data systematically underestimates the calculated constants by multiple orders of magnitude for the high-spin hexaaqua complex as the starting material, but shows a linear correlation trend between the experimental and calculated values. A similar correlation exists between the calculated values for the iron and ruthenium complexes. For the latter, for which no experimental data are available, the values are very high. On the relative scale calculated, the stability constants for the macrocyclic porphyrin and phthalocyanine complexes are unexpectedly low when calculated from the neutral ligand, but very high when calculated for reactions starting from the deprotonated ligand in its dianionic state. The limitations of the model are discussed, in particular with regards to the likely very large influence of solvation energies and hydrogen-bond networks not explicitly formulated in the SMD solvent model employed and Brønsted acid–base reactions between complexes and ligands, and its merits critically evaluated.

Get full access to this article

View all available purchase options and get full access to this article.

References

(1)
Renner H.; Schlamp G.; Hollmann D.; Lüschow H. M.; Tews P.; Rothaut J.; Dermann K.; Knödler A.; Hecht C.; Schlott M.; Drieselmann R.; Peter C.; Schiele R. Gold, Gold alloys, and Gold compounds. In Ullmann's Encyclopedia of Industrial Chemistry, 2000.
(2)
Brumby A.; Braumann P.; Zimmermann K.; Van Den Broeck F.; Vandevelde T.; Goia D.; Renner H.; Schlamp G.; Zimmermann K.; Weise W.; Tews P.; Dermann K.; Knödler A.; Schröder K. H.; Kempf B.; Lüschow H. M.; Peter C.; Schiele R. Silver, Silver compounds, and Silver alloys. In Ullmann's Encyclopedia of Industrial Chemistry, 2008.
(3)
Harrington J. M.; Jones S. B.; VanDerveer D. J.; Bartolotti L. J.; Hancock R. D. Inorg. Chim. Acta, 2009, 362(4), 1122.
(4)
Rulisek L.; Havlas Z. J. Phys. Chem. A, 2002, 106(15), 3855.
(5)
Rulisek L.; Havlas Z. Int. J. Quantum Chem. 2003, 91(3), 504.
(6)
Ryde U. Curr. Opin. Chem. Biol. 2003, 7(1), 136.
(7)
Dudev T.; Lim C. Annu. Rev. Biophys. 2008, 37, 97.
(8)
Hancock R. D.; Bartolotti L. J., Inorg. Chim. Acta, 2013, 396, 101.
(9)
Vukovic S.; Hay B. P.; Bryantsev V. S., Inorg. Chem. 2015, 54(8), 3995.
(10)
Chen H.; Shi R.; Ow H., ACS Omega, 2019, 4(24), 20665.
(11)
Fultz E. L.; Jones S. B.; Ivanov A. S.; Bryantsev V. S.; Dai S.; Hancock R. D., Inorg. Chem. 2022, 61(26), 9960.
(12)
Zhou L.; Bosscher M.; Zhang C.; Özçubukçu S.; Zhang L.; Zhang W.; Li C. J.; Liu J.; Jensen M. P.; Lai L.; He C. Nat. Chem. 2014, 6, 236.
(13)
Yuan Y.; Yu Q.; Wen J.; Li C.; Guo Z.; Wang X.; Wang N. Angew. Chem., Int. Ed. 2019, 58(34), 11785
(14)
McBryde W. A. E. A critical review of equilibrium data for proton- and metal complexes of 1,10-phenanthroline, 2,2′-bipyridyl and related compounds. In A Critical Review of Equilibrium Data for Proton and Metal Complexes of 1,10–phenanthroline, 2,2'–Bipyridyl and Related Compounds; McBryde W. A. E., Ed.; Pergamon, 1978; pp 1–17.
(15)
Florence T. M.; Batley G. E. Crc Crit. Rev. Anal. Chem. 1980, 9(3), 219.
(16)
Hancock R. D.; Martell A. E. Chem. Rev. 1989, 89(8), 1875.
(17)
Martell A. E.; Hancock R. D.; Motekaitis R. J. Coord. Chem. Rev. 1994, 133, 39.
(18)
Hay B. P.; Hancock R. D. Coord. Chem. Rev. 2001, 212, 61.
(19)
Richens D. T. Chem. Rev. 2005, 105(6), 1961.
(20)
Butler A.; Theisen R. M. Coord. Chem. Rev. 2010, 254(3–4), 288.
(21)
Hancock R. D. Chem. Soc. Rev. 2013, 42(4), 1500.
(22)
Vinokurov E. G.; Bondar V. V. Russ. J. Coord. Chem. 2003, 29(1), 66.
(23)
Hancock R. D.; Bartolotti L. J. Chem. Commun. 2004, (5), 534.
(24)
Hancock R. D.; Bartolotti L. J. Inorg. Chem. 2005, 44(20), 7175.
(25)
Jerome S. V.; Hughes T. F.; Friesner R. A. J. Phys. Chem. B, 2014, 118(28), 8008.
(26)
Vinokurov E. G.; Firer A. A. Russ. J. Inorg. Chem. 2014, 59(6), 568.
(27)
Solov'ev V.; Kireeva N.; Ovchinnikova S.; Tsivadze A. J. Inclusion Phenom. Macrocyclic Chem. 2015, 83(1–2), 89.
(28)
Hancock R. D.; Bartolotti L. J. Polyhedron, 2013, 52, 284.
(29)
Kanahashi K.; Urushihara M.; Yamaguchi K. Sci. Rep. 2022, 12(1).
(30)
Dimmock P. W.; Warwick P.; Robbins R. A. Analyst, 1995, 120(8), 2159.
(31)
Blake A. J.; Bencini A.; Caltagirone C.; De Filippo G.; Dolci L. S.; Garau A.; Isaia F.; Lippolis V.; Mariani P.; Prodi L.; Montalti M.; Zaccheroni N.; Wilson C. Dalton Trans. 2004, (17), 2771.
(32)
Harrington J. M.; Jones S. B.; Hancock R. D. Inorg. Chim. Acta, 2005, 358(15), 4473.
(33)
Nonat A.; Gateau C.; Fries P. H.; Mazzanti M. Chem.-a Eur. J. 2006, 12(27), 7133.
(34)
Bruijnincx P. C. A.; Sadler P. J. Curr. Opin. Chem. Biol. 2008, 12(2), 197.
(35)
Kálmán F. K.; Baranyai Z.; Tóth I.; Bányai I.; Király R.; Brücher E.; Aime S.; Sun X. K.; Sherry A. D.; Kovács Z. Inorg. Chem. 2008, 47(9), 3851.
(36)
Gephart R. T.; Williams N. J.; Reibenspies J. H.; De Sousa A. S.; Hancock R. D. Inorg. Chem. 2008, 47(22), 10342.
(37)
Kobayashi T.; Yaita T.; Suzuki S.; Shiwaku H.; Okamoto Y.; Akutsu K.; Nakano Y.; Fujii Y., Sep. Sci. Technol. 2010, 45(16), 2431.
(38)
Cukrowski I.; Govender K. K. Inorg. Chem. 2010, 49(15), 6931.
(39)
Williams N. J.; Ballance D. G.; Reibenspies J. H.; Hancock R. D. Inorg. Chim. Acta, 2010, 363(14), 3694.
(40)
Merrill D.; Hancock R. D. Radiochim. Acta, 2011, 99(3), 161.
(41)
Hamilton J. M.; Anhorn M. J.; Oscarson K. A.; Reibenspies J. H.; Hancock R. D. Inorg. Chem. 2011, 50(7), 2764.
(42)
Solov'ev V.; Marcou G.; Tsivadze A.; Varnek A. Ind. Eng. Chem. Res. 2012, 51(41), 13482.
(43)
Ogden M. D.; Sinkov S. I.; Meier G. P.; Lumetta G. J.; Nash K. L. J. Solution Chem. 2012, 41(12), 2138.
(44)
Carolan A. N.; Cockrell G. M.; Williams N. J.; Zhang G.; VanDerveer D. G.; Lee H. S.; Thummel R. P.; Hancock R. D., Inorg. Chem. 2013, 52(1), 15.
(45)
Deyarajan D.; Lian P.; Brooks S. C.; Parks J. M.; Smith J. C. ACS Earth Space Chem. 2018, 2(11), 1168.
(46)
Holland J. P. Inorg. Chem. 2020, 59(3), 2070.
(47)
Fultz E. L.; Jones S. B.; Ivanov A. S.; Dai S.; Bryantsev V. S.; Hancock R. D. Inorg. Chem. 2022.
(48)
Ramdhani D.; Listiani N.; Sriyani M. E.; Maria W. E.; Watabe H.; Mustarichie R.; Kusuma S. A. F.; Janitra R. S. Heliyon, 2023, 9(2).
(49)
Uritis S.; Thummel R. P.; Jones S. B.; Lee H. S.; Hancock R. D. Eur. J. Inorg. Chem. 2024.
(50)
Bullock R. M. Chem. - Eur. J. 2004, 10(10), 2366.
(51)
Schlaf M.; Gosh P.; Fagan P. J.; Hauptman E.; Bullock R. M. Angew. Chem., Int. Ed. 2001, 40, 3887.
(52)
Xie Z.; Schlaf M. J. Mol. Catal. A: Chem. 2005, 229(1–2), 151.
(53)
Schlaf M. J. Chem. Soc., Dalton Trans. 2006, (39), 4645.
(54)
Dykeman R. R.; Luska K. L.; Thibault M. E.; Jones M. D.; Schlaf M.; Khanfar M.; Taylor N. J.; Britten J. F.; Harrington L. J. Mol. Catal. A: Chem. 2007, 277, 233.
(55)
Schlaf M.; Ghosh P.; Fagan P. J.; Hauptman E.; Bullock R. M. Adv. Synth. Catal. 2009, 351(5), 789.
(56)
Taher D.; Thibault M. E.; Mondo D. D.; Jennings M.; Schlaf M. Chem. - Eur. J. 2009, 10132.
(57)
Thibault M. E.; DiMondo D. V.; Jennings M.; Abdelnur P. V.; Eberlin M. N.; Schlaf M. Green Chem. 2011, 13(2), 357.
(58)
DiMondo D.; Thibault M. E.; Britten J.; Schlaf M. Organometallics, 2013, 32(21), 6541.
(59)
Sullivan R. J.; Latifi E.; Chung B. K. M.; Soldatov D. V.; Schlaf M. ACS Catal. 2014, 4116.
(60)
Minard T. A.; Oswin C. T.; Waldie F. D. C.; Howell J. K.; Scott B. M. T.; Mondo D. D.; Sullivan R. J.; Stein B.; Jennings M.; Schlaf M. J. Mol. Catal. A: Chem. 2016, 422, 175.
(61)
Sullivan R. J.; Kim J.; Hoyt C.; Silks Iii L. A.; Schlaf M. Polyhedron, 2016, 108, 104.
(62)
Latifi E.; Marchese A. D.; Hulls M. C. W.; Soldatov D. V.; Schlaf M. Green Chem. 2017, 19, 4666.
(63)
Stones M. K.; Banz Chung E. M. J.; da Cunha I. T.; Sullivan R. J.; Soltanipanah P.; Magee M.; Umphrey G. J.; Moore C. M.; Sutton A. D.; Schlaf M. ACS Catal. 2020, 2667.
(64)
Stones M. K.; Sullivan R. J.; Soldatov D. V.; Schlaf M. Inorg. Chim. Acta, 2020, 502, 119391.
(65)
Chung E. M.-J. B.; Stones M. K.; Latifi E.; Moore C.; Sutton A. D.; Umphrey G.; Soldatov D.; Schlaf M. Can. J. Chem. 2021, 99(2), 113.
(66)
Bockisch C.; Lorance E. D.; Hartnett H. E.; Shock E. L.; Gould I. R. ACS Earth Space Chem. 2018, 2(8), 821.
(67)
Yamaguchi A.; Hiyoshi N.; Sato O.; Shirai M. Green Chem. 2011, 13(4), 873.
(68)
Yamaguchi A.; Muramatsu N.; Mimura N.; Shirai M.; Sato O. Phys. Chem. Chem. Phys. 2017, 19(4), 2714.
(69)
Yamaguchi A.; Mimura N.; Shirai M.; Sato O. Carbohydr. Res. 2020, 487.
(70)
Slater-Eddy G. H.; England A. E.; Lima D. Q.; da Cunha I. T.; Stones M. K.; Earnden L. I.; Montoya Pareja J. S.; Skinner K.; Soldatov D. V.; van der Zalm J.; Schlaf M. ACS Catal. 2023, 11323.
(71)
Kubas G. Metal Dihydrogen and σ-Bond Complexes. Structure, Theory and Reactivity; Kluwer Academic/Plenum Publishers: New York, 2001.
(72)
Hancock R. D.; McDougall G. J. Adv. Mol. Relax. Interact. Processes, 1980, 18(2), 99.
(73)
Hancock R. D.; Melton D. L.; Harrington J. M.; McDonald F. C.; Gephart R. T.; Boone L. L.; Jones S. B.; Dean N. E.; Whitehead J. R.; Cockrell G. M. Coord. Chem. Rev. 2007, 251(13–14), 1678.
(74)
Hancock R. D. Analyst, 1997, 122(4), R51.
(75)
Hancock R. D. J. Chem. Educ. 1992, 69(8), 615.
(76)
Dobrawa R.; Ballester P.; Saha-Moller C. R.; Wurthner F. Thermodynamics of 2,2 ': 6 ',2 ''-terpyridine-metal ion complexation. In Metal-Containing and Metallosupramolecular Polymers and Materials; Newkome G. R.; Manners I., Ed.; Schubert, U. S., 2006; 928, pp 43–62.
(77)
Gutten O.; Rulisek L. Inorg. Chem. 2013, 52(18), 10347.
(78)
Vallet V.; Wahlgren U.; Grenthe I. J. Am. Chem. Soc. 2003, 125(48), 14941.
(79)
Fey N.; Harvey J. N.; Lloyd-Jones G. C.; Murray P.; Orpen A. G.; Osborne R.; Purdie M. Organometallics, 2008, 27(7), 1372.
(80)
Sengupta A.; Seitz A.; Merz K. M. J. Am. Chem. Soc. 2018, 140(45), 15166.
(81)
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; M. I.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A., Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J. G. Gaussian 16, Revision B.01; Inc., Wallingford CT, GaussView 5.0., E.U.A., 2016.
(82)
Mardirossian N.; Head-Gordon M. Mol. Phys. 2017, 115(19), 2315.
(83)
Zhao Y.; Truhlar D. G. Theor. Chem. Acc. 2008, 120(1), 215.
(84)
Weigend F.; Ahlrichs R. Phys. Chem. Chem. Phys. 2005, 7(18), 3297.
(85)
Marenich A. V.; Cramer C. J.; Truhlar D. G. J. Phys. Chem. B, 2009, 113(18), 6378.
(86)
Perrin D. D. Stability constants of metal-ion complexes. Part b: Organic ligands; Pergamon Press: Oxford, 1979.
(87)
Martell A. E. Critical stability constants /by Arthur E.Martell and Robert M.Smith; Plenum Press: New York, 1974; p 1974. Vol. 2, 5: 1st Suppl (1975)., 6: 2nd Suppl. (1975).
(88)
Fontana I.; Lauria A.; Spinolo G. Physica Status Solidi B-Basic Solid State Phys. 2007, 244(12), 4669.
(89)
Orgel L. E. J. Chem. Phys. 1955, 23(10), 1819.
(90)
Orgel L. E. J. Chem. Phys. 1955, 23(6), 1004.
(91)
Griffith J. S. J. Inorg. & Nucl. Chem. 1956, 2(4), 229.
(92)
Huey J. E. Inorganic Chemistry; 3rd ed.; Harper & Row: New York, 1983; p 380.
(93)
Bernhard P.; Lehmann H.; Ludi A. J. Chem. Soc., Chem. Commun. 1981, (23), 1216.
(94)
Bernhard P.; Buergi H. B.; Hauser J.; Lehmann H.; Ludi A. Inorg. Chem. 1982, 21(11), 3936.
(95)
Bernhard P.; Biner M.; Ludi A. Polyhedron, 1990, 9(8), 1095.
(96)
Mercer E. E.; Buckley R. R. Inorg. Chem. 1965, 4(12), 1692.
(97)
Baes C. F.; Mesmer R. E. The Hydrolysis of Cations; Wiley: New York, 1976.
(98)
Li J.; Fisher C. L.; Chen J. L.; Bashford D.; Noodleman L. Inorg. Chem. 1996, 35(16), 4694.
(99)
Galstyan G.; Knapp E. W. J. Comput. Chem. 2015, 36(2), 69.
(100)
The pKa of [Ru(H2O)6]3+ has been determined to be 2.90 (see Bottcher W.; Brown G. M.; Sutin N., Inorg. Chem. 1979, 18(6), 1447.), but the pKa for the corresponding 2+ complex is to our knowledge unknown.
(101)
Collman J. P.; Wagenknecht P. S.; Hembre R. T.; Lewis N. S. J. Am. Chem. Soc. 1990, 112, 1294.
(102)
Collman J. P.; Wagenknecht P. S.; Hutchinson J. E.; Lewis N. S.; Lopez M. A.; Guilard R.; L'Her M.; Bothner-By A. A.; Mishra P. K. J. Am. Chem. Soc. 1992, 114, 5654.
(103)
Liu H.; Fan S. G.; Wang Z. X.; Chen K.; Guo A. J. ChemistrySelect, 2017, 2(4), 1613.
(104)
Enthaler S.; Erre G.; Tse M. K.; Junge K.; Beller M. Tetrahedron Lett. 2006, 47(46), 8095.
(105)
Enthaler S.; Spilker B.; Erre G.; Junge K.; Tse M. K.; Beller M. Tetrahedron, 2008, 64(17), 3867.
(106)
Stangel C.; Charalambidis G.; Varda V.; Coutsolelos A. G.; Kostas I. D. Eur. J. Inorg. Chem. 2011, 2011(30), 4709.
(107)
Sorokin A. B. Chem. Rev. 2013, 113(10), 8152.
(108)
Löbbert G. Phthalocyanines. In Ullmann's Encyclopedia of Industrial Chemistry, 2012.
(109)
d'Alessandro N.; Tonucci L.; Morvillo A.; Dragani L. K.; Deo M. D.; Bressan M. J. Organomet. Chem. 2005, 690(8), 2133.
(110)
Collman J. P.; Barnes C. E.; Collins T. J.; Brothers P. J.; Gallucci J.; Ibers J. A. J. Am. Chem. Soc. 1981, 103(23), 7030.
(111)
Sugimoto H.; Higashi T.; Mori M.; Nagano M.; Yoshida Z.; Ogoshi H. Bull. Chem. Soc. Jpn. 1982, 55(3), 822.
(112)
Zardi P.; Intrieri D.; Carminati D. M.; Ferretti F.; Macchi P.; Gallo E. J. Porphyrins Phthalocyanines, 2016, 20(08n11), 1156.

Supplementary material

Supplementary Material 1 (DOCX / 130 KB).

Information & Authors

Information

Published In

cover image Canadian Journal of Chemistry
Canadian Journal of Chemistry
Volume 102Number 12December 2024
Pages: 854 - 864

Article versions

History

Received: 15 February 2024
Accepted: 23 May 2024
Accepted manuscript online: 20 June 2024
Version of record online: 17 October 2024

Notes

This paper is part of a Special Issue entitled Celebrating 150 Years of Chemistry at the University of Guelph.

Data Availability Statement

Comprehensive list of all computed compound energies and sample calculations. All final data in form of a docx file listing the Cartesian coordinates and energies of the calculated structures in the non-proprietary pdb format. This should allow anyone skilled in the art and with access to computational chemistry software to validate and replicate the results.

Permissions

Request permissions for this article.

Key Words

  1. transition metal complexes
  2. stability constants
  3. thermal stability
  4. catalysis
  5. DFT calculations

Authors

Affiliations

Kyle Salmon
Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
Author Contributions: Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, and Writing – original draft.
The Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, (GWC)2
Author Contributions: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, and Writing – review & editing.

Author Contributions

Conceptualization: MS
Data curation: KS, MS
Formal analysis: KS, MS
Funding acquisition: MS
Investigation: KS, MS
Methodology: KS, MS
Project administration: MS
Resources: MS
Software: KS, MS
Supervision: MS
Validation: KS, MS
Visualization: KS, MS
Writing – original draft: KS, MS
Writing – review & editing: MS

Competing Interests

The authors declare there are no competing interests.

Funding Information

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Chemistry

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media