Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Development length of glass fibre reinforced polymer (GFRP) rebar based on non-uniform bond stress

Publication: Canadian Journal of Civil Engineering
28 May 2021

Abstract

Due to the assumption of uniform bond stress, the development length of fibre reinforced polymer (FRP) bars by design standards can be unnecessarily long and difficult to provide in practice. Hence, the bond stress distribution and required development length of a glass fibre reinforced polymer (GFRP) rebar is investigated. Four beam-bond specimens, two following RILEM specifications and two based on a procedure by ACI are tested to evaluate the effect of test method on bond strength. Ten pullout tests are also performed using the same bar. The two test methods yield similar results, but the ACI test is easier to perform. The bond stress distribution in the beams is highly nonlinear but in the pullout tests approaches uniformity. The actual development length is found to be 50% to 250% less than that required by the aforementioned standards. Consequently, a new equation is proposed based on the logistic growth function to model the non-uniform bond stress distribution and estimate the required development length.

Résumé

En raison de l’hypothèse d’effort d’adhérence uniforme, la longueur de développement des barres armatures en fibre renforcé de polymère (FRP) obtenue selon les normes de conception peut être inutilement longue et difficile à fournir dans la pratique. Par conséquent, la répartition de l’effort d’adhérence et la longueur de développement requise d’une barre d’armature en polymère renforcé de fibre de verre (GFRP) sont étudiées. Quatre échantillons de poutre–adhérence, deux suivant les spécifications de la Réunion Internationale des Laboratoires et Experts des Matériaux (RILEM) et deux basées sur une procédure de l’American Concrete Institute (ACI) sont mis à l’essai pour évaluer l’effet de la méthode d’essai sur la résistance d’adhésion. Dix essais d’arrachement sont également effectués avec la même barre. Les deux méthodes d’essai donnent des résultats similaires, mais l’essai de l’ACI est plus facile à effectuer. La répartition de l’effort d’adhérence dans les poutres est franchement non linéaire, mais pour les essais d’arrachement, l’uniformité est presqu’atteinte. La longueur réelle du développement est de 50 à 250 % inférieure à celle exigée par les normes précédentes. Par conséquent, une nouvelle équation est proposée basée sur la fonction de croissance sigmoïde pour modéliser la répartition non uniforme de l’effort d’adhérence et estimer la longueur de développement requise. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Achillides Z. and Pilakoutas K. 2004. Bond behavior of fiber reinforced polymer bars under direct pullout conditions. Journal of Composites for Construction, ASCE, 8: 173–181.
ACI 208. 1958. Test procedure to determine relative bond value of reinforcing bars. Tech. rep. American Concrete Institute (ACI), Farmington Hills, Mich.
ACI 408 R03. 2003. Bond and development of straight reinforcing bars in tension. Tech. rep. American Concrete Institute (ACI), Farmington Hills, Mich.
ACI 440.1. 2006. Guide for the Design and Construction of Structural Concrete Reinforced with FRP bars. Tech. rep. American Concrete Institute (ACI), Farmington Hills, Mich. Available from www.concrete.org.
ASTM D7205/D7205M-06. 2011. Standard test method for tensile properties of fiber reinforced polymer matrix composite bars. ASTM International, West Conshohocken, Pa.
ASTM A370-14. 2014. Standard test methods and definitions for mechanical testing of steel products. ASTM International, West Conshohocken, Pa.
ASTM C39/C39M-14. 2014. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, Pa.
ASTM C192/C192M-14. 2014. Standard practice for making and curing concrete test specimens in the laboratory. ASTM International, West Conshohocken, Pa.
ASTM C469/C469M-14e1. 2014. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. ASTM International, West Conshohocken, Pa.
ASTM A944-10. 2015. Standard test method for comparing bond strength of steel reinforcing bars to concrete using beam-end specimens. ASTM International, West Conshohocken, Pa.
Baena M., Torres L., Turon A., and Barris C. 2009. Experimental study of bond behaviour between concrete and FRP bars using a pull-out test. Composites Part B: Engineering, 40(8): 784–797.
Benmokrane B., Tighiouart B., and Chaallal O. 1996. Bond strength and load distribution of composite GFRP reinforcing bars in concrete. ACI Materials Journal, 93: 254–259.
CSA A23.3. 2014. Design of concrete structures. Canadian Standards Association, Mississauga, Ont.
CSA S6. 2006. Canadian highway bridge design code. 10th ed. Canadian Standards Association, Mississauga, Ont.
CSA S806. 2012. Design and construction of building structures with fiber-reinforced polymers. Canadian Standards Association, Mississauga, Ont.
Davalos J.F., Chen Y., and Ray I. 2008. Effect of FRP bar degradation on interface bond with high strength concrete. Cement and Concrete Composites, 30: 722–730.
Desnerck P., Schutter G., and Taerwe L. 2010. Bond behaviour of reinforcing bars in self-compacting concrete: experimental determination by using beam tests. Materials and Structures, 43: 53–62.
Esfandeh M., Sabet A.R., Rezadoust A.M., and Alavi M.B. 2009. Bond performance of FRP rebars with various surface deformations in reinforced concrete. Polymer Composites, 30: 576–582.
Feldman L.R. and Bartlett F.M. 2007. Bond stresses along plain steel reinforcing bars in pullout specimens. ACI Structural Journal, 104(6): 685–692.
Hao Q., Wang Y., He Z., and Ou J. 2009. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete. Construction and Building Materials, 23(2): 865–871.
Katz A., Berman N., and Bank L.C. 1999. Effect of high temperature on bond strength of FRP rebars. Journal of Composites for Construction, 3(2): 73–81.
Lee J.Y., Kim T.Y., Kim T.J., Yi C.K., Park J.S., You Y.C., and Park Y.H. 2008. Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete. Composites Part B: Engineering, 39: 258–270.
Lin X. and Zhang Y. 2013. Bond–slip behaviour of FRP-reinforced concrete beams. Construction and Building Materials, 44: 110–117.
Mazaheripour H., Barros J.A., Sena-Cruz J.M., Pepe M., and Martinelli E. 2013. Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete. Composite Structures, 95: 202–212.
Menezes F., El Debs A., and El Debs M. 2008. Bond-slip behavior of self-compacting concrete and vibrated concrete using pull-out and beam tests. Materials and Structures, 41: 1073–1089.
Moreno, C., and Bastos, A.S. 2006. Experimental and numerical evaluation of bond properties between reinforcement and concrete. In Mechanics and Materials in Design (M2D-5), 5th International Conference, Faculty of Engineering, University of Porto, Portugal, 24–26 July 2006. pp. 1–17.
Park, R., and Paulay, T. 1975. Reinforced concrete structures. Wiley Interscience.
Perry E.S. and Thompson J.N. 1966. Bond stress distribution on reinforcing steel in beams and pullout specimens. ACI Journal, 63: 865–875.
Quayyum, S., and Rteil, A. 2012. A proposed design equation for the development length of FRP rebars in concrete. In Proceedings of the 6th International Conference on Advanced Composite Materials in Bridges and Structures 2012 (ACMBS-VI 2012), Kingston, Ont., 22–25 May, 2012.
RILEM TC-RC5. 1994. RC5-Bond test for reinforcement steel. 1. Beam test, 1982. In RILEM Recommendations for the Testing and Use of Constructions Materials. TC9-RC ed. E & FN SPON, Bagneux, France.
Robert M. and Benmokrane B. 2010. Behavior of GFRP reinforcing bars subjected to extreme temperatures. Journal of Composites for Construction, ASCE, 14: 353–360.
Rolland A., Quiertant M., Khadour A., Chataigner S., Benzarti K., and Argoul P. 2018. Experimental investigations on the bond behavior between concrete and FRP reinforcing bars. Construction and Building Materials, 173: 136–148.
Soong W.H., Raghavan J., and Rizkalla S.H. 2011. Fundamental mechanisms of bonding of glass fiber reinforced polymer reinforcement to concrete. Construction and Building Materials, 25: 2813–2821.
Tighiouart B., Benmokrane B., and Gao D. 1998. Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars. Construction and Building Materials, 12: 453–462.
Tighiouart B., Benmokrane B., and Mukhopadhyaya P. 1999. Bond strength of glass FRP rebar splices in beams under static loading. Construction and Building Materials, 13: 383–392.
Wambeke B.W. and Shield C.K. 2006. Development length of glass fiber-reinforced polymer bars in concrete. ACI Structural Journal, 103: 11–17.
Yan F., Lin Z., and Yang M. 2016. Bond mechanism and bond strength of GFRP bars to concrete. Composites Part B: Engineering, 98: 56–69.
Zhou J., Chen X., and Chen S. 2012. Effect of different environments on bond strength of glass fiber-reinforced polymer and steel reinforcing bars. KSCE Journal of Civil Engineering, 16: 994–1002.

Information & Authors

Information

Published In

cover image Canadian Journal of Civil Engineering
Canadian Journal of Civil Engineering
Volume 49Number 3March 2022
Pages: 420 - 431

History

Received: 15 June 2020
Accepted: 21 May 2021
Accepted manuscript online: 28 May 2021
Version of record online: 28 May 2021

Permissions

Request permissions for this article.

Key Words

  1. analysis
  2. beam (support)
  3. bond stress test
  4. development length
  5. glass fibre reinforced polymer (GFRP) bar

Mots-clés

  1. analyse
  2. poutre (support)
  3. essai d’effort d’adhérence
  4. longueur de développement
  5. armature en polymère renforcé de fibre de verre (GFRP)

Authors

Affiliations

Elyas Makhmalbaf
Civil Engineering Department, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
A. Ghani Razaqpur [email protected]
College of Environmental Science and Engineering, Nankai University, Tianjin, China.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Proposed Development Length Equations for GFRP Bars in Flexural Reinforced Concrete Members

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Civil Engineering

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media