Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Hydrogeological and geophysical properties of the very-slow-moving Ripley Landslide, Thompson River valley, British Columbia

Publication: Canadian Journal of Earth Sciences
20 August 2020

Abstract

Landslides along a 10 km reach of Thompson River south of Ashcroft, British Columbia, have repeatedly damaged vital railway infrastructure, while also placing public safety, the environment, natural resources, and cultural heritage features at risk. Government agencies, universities, and the railway industry are focusing research efforts on a representative test site — the very-slow-moving Ripley Landslide — to manage better the geohazard risk in this corridor. We characterize the landslide’s form and function through hydrogeological and geophysical mapping. Field mapping and exploratory drilling distinguish 10 hydrogeological units in surficial deposits and fractured bedrock. Electrical resistivity tomography, frequency domain electromagnetic conductivity measurements, ground-penetrating radar, seismic pressure wave refraction, and multispectral analysis of shear waves; in conjunction with downhole measurement of natural gamma radiation, induction conductivity, and magnetic susceptibility provide a detailed, static picture of soil moisture and groundwater conditions within the hydrogeological units. Differences in electrical resistivity of the units reflect a combination of hydrogeological characteristics and climatic factors, namely temperature and precipitation. Resistive earth materials include dry glaciofluvial outwash and nonfractured bedrock; whereas glaciolacustrine clay and silt, water-bearing fractured bedrock, and periodically saturated subglacial till and outwash are conductive. Dynamic, continuous real-time monitoring of electrical resistivity, now underway, will help characterize water-flow paths, and possible relationships to independently monitor pore pressures and slope creep. These new hydrogeological and geophysical data sets enhance understanding of the composition and internal structure of this landslide and provide important context to interpret multiyear slope stability monitoring ongoing in the valley.

Résumé

Les glissements de terrain le long d’un tronçon de 10 km de la rivière Thompson au sud d’Ashcroft (Colombie-Britannique) ont causé des dommages à répétition à des infrastructures ferroviaires essentielles, tout en posant des risques pour la sécurité du public, le milieu ambiant, des ressources naturelles et des éléments du patrimoine culturel. Des agences gouvernementales, des universités et le secteur ferroviaire ont axé des efforts de recherche sur un site d’essai représentatif, le glissement très lent de Ripley, afin de mieux gérer les géorisques le long de ce corridor. Nous caractérisons la forme et la fonction de ce glissement à la lumière de la cartographie hydrogéologique et géophysique. La cartographie de terrain et le forage d’exploration permettent de distinguer 10 unités hydrogéologiques dans les dépôts de surface et le roc fracturé. La tomographie électrique, des mesures de conductivité électromagnétique en domaine de fréquence, le géoradar, la réfraction des ondes sismiques de compression et l’analyse multispectrale des ondes de cisaillement, combinés à la mesure au fond de puits du rayonnement gamma naturel, de la conductivité par induction et de la susceptibilité magnétique, fournissent un portait statique détaillé de l’eau dans le sol et des conditions associées à l’eau souterraine dans les unités hydrogéologiques. Les différences de résistivité électrique entre unités reflètent une combinaison de caractéristiques hydrogéologiques et de facteurs climatiques, à savoir la température et les précipitations. Les matériaux résistifs comprennent des dépôts d’épandage fluvioglaciaire secs et le roc non fracturé, alors que les argiles et silts glaciolacustres, le roc fracturé contenant de l’eau et du till infraglaciaire et des dépôts d’épandage périodiquement saturés sont conducteurs. La surveillance continue et dynamique en temps réel de la résistivité électrique actuellement en cours aidera à caractériser les voies d’écoulement de l’eau et les relations possibles avec la pression interstitielle et la reptation de talus, qui font l’objet d’une surveillance indépendante. Ces nouveaux ensembles de données hydrogéologiques et géophysiques améliorent la compréhension de la composition et de la structure interne de ce glissement de terrain et fournissent un important contexte pour l’interprétation des données issues de la surveillance pluriannuelle de la stabilité en cours dans la vallée. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Askarinejad A., Akca D., and Springman S. 2018. Precursors of instability in a natural slope due to rainfall: a full-scale experiment. Landslides, 15: 1745–1759.
Baum, R., McKenna, J., Godt, J., Harp, E., and McMullen, S. 2005. Hydrologic monitoring of landslide-prone coastal bluffs near Edmonds and Everett, Washington, 2001–2004. U.S. Geological Survey, Open-File Report, 1063, p. 42.
Beatty, T.W., Orchard, M.J., and Mustard, P.S. 2006. Geology and tectonic history of the Quesnel terrane in the area of Kamloops, British Columbia. In Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, Canadian and Alaskan Cordillera. Geological Association of Canada, Special Paper, 45. pp. 483–504.
Bishop, N., Evans, S., Petley, D., and Unger, A. 2008. The geotechnics of glaciolacustrine sediments and associated landslides near Ashcroft (British Columbia) and the Grand Coulee Dam (Washington). In Proceedings of the 4th Canadian Conference on Geohazards: From Causes to Management. p. 594.
Bobrowsky, P., Sladen, W., Huntley, D., Zhang, Q., Bunce, C., Edwards, T. et al. 2014. Multi-parameter monitoring of a slow moving landslide: Ripley Slide, British Columbia, Canada. In Proceedings of the Engineering Geology for Society and Territory — Volume 2, Landslide Processes, IAEG Congress, Springer Publishing. pp. 155–159.
Bobrowsky, P., Huntley, D., Neelands, P., MacLeod, R., Mariampillai, D., Hendry, M. et al. 2017. Ripley Landslide — Canada’s premier landslide field laboratory. In Geological Society of America, Annual Meeting Abstracts and Proceedings Volume 1.
Bobrowsky, P., MacLeod, R., Huntley, D., Niemann, O., Hendry, M., and Macciotta, R. 2018. Ensuring resource transport safety: monitoring critical infrastructure with UAV technology. In Resources for Future Generations, Proceedings Volume and Abstracts, Vancouver, Canada. p. 1.
Bovis M.J. 1985. Earthflows in the Interior Plateau, southwest British Columbia. Canadian Geotechnical Journal, 22(3): 313–334.
Bovis M.J. and Jones P. 1992. Holocene history of earthflow mass movements in south-central British Columbia: the influence of hydroclimatic changes. Canadian Journal of Earth Sciences, 29(8): 1746–1755.
Bunce, C., and Chadwick, I. 2012. GPS monitoring of a landslide for railways. In Landslides and Engineered Slopes — Protecting Society Through Improved Understanding. pp. 1373–1379.
Chung M.-C., Tan C.-T., and Chen C.-H. 2017. Local rainfall thresholds for forecasting landslide occurrence: taipingshan landslide triggered by Typhoon Saola. Landslides, 14: 19–33.
Church M. and Ryder J.M. 1972. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin, 83: 3059–3072.
Clague J. and Evans S. 2003. Geologic framework for large historic landslides in Thompson River valley, British Columbia. Environmental and Engineering Geoscience, 9(3): 201–212.
Cruden, D.M., and Varnes, D.J. 1996. Landslide types and processes. In Landslides, Investigation and Mitigation. Washington Transportation Research Board, Special Report 247, pp. 36–75.
Doll C., Trinks C., Sedlacek N., Pelikan V., Comes T., and Schultmann F. 2014. Adapting rail and road networks to weather extremes: case studies for southern Germany and Austria. Natural Hazards, 72: 63–85.
Drysdale, C.W. 1914. Geology of the Thompson River valley below Kamloops Lake, B.C. In 1912 Summary Report, Geological Survey, Department of Mines Sessional Paper 26, pp. 115–150.
Eshraghian A., Martin C., and Cruden D. 2007. Complex earth slides in the Thompson River Valley, Ashcroft, British Columbia. Environmental and Engineering Geoscience, 13: 161–181.
Eshraghian A., Martin C., and Morgenstern N. 2008. Movement triggers and mechanisms of two earth slides in the Thompson River Valley, British Columbia, Canada. Canadian Geotechnical Journal, 45(9): 1189–1209.
Evans S.G. 1984. The 1880 landslide dam on Thompson River, near Ashcroft, British Columbia. Current Research, Part A: Geological Survey of Canada Paper, 84(1A): 655–658.
Fredlund D.G., Morgenstern N.R., and Widger R.A. 1978. The shear strength of unsaturated soils. Canadian Geotechnical Journal, 15(3): 313–321.
Fulton, R.J. 1969. Glacial Lake History, Southern Interior Plateau, British Columbia. Geological Survey of Canada, Paper, 69-37, 14 pp.
Geertsema M., Schwab J., Blais-Stevens A., and Sakals M. 2009. Landslides impacting linear infrastructure in west central British Columbia. Natural Hazards, 48: 59–72.
Gibson A., Culshaw M., Dashwood C., and Pennington C. 2013. Landslide management in the UK — the problem of managing hazards in a ‘low-risk’ environment. Landslides, 10: 599–610.
Göransson, G., Hedfors, J., Ndayikengurukiye, G., and Odén, K. 2016. Climate change induced river erosion as a trigger for landslide. In Proceedings of the 7th Nordic Geotechnical Meeting, Challenges in Nordic Geotechnic, Reykjavik, Iceland, pp. 1183–1192.
Gordey, S.P., Geldsetzer, H.H.J., Morrow, D.W., Bamber, E.W., Henderson, C.M., Richards, B.C. et al. 1991. Ancestral North America, Part A. In Upper Devonian to Middle Jurassic Assemblages, Chapter 8 of Geology of the Cordilleran Orogen in Canada, Geology of Canada, Geological Survey of Canada, Vol. 4. pp. 219–327.
Haque U., Blum P., da Silva P., Andersen P., Pilz J., Chalov S.R, et al. 2016. Fatal landslides in Europe. Landslides, 13: 1545–1554.
Hebda, R.J. 1982. Postglacial history of grasslands of southern British Columbia and adjacent regions. In Grassland Ecology and Classification Symposium Proceedings. British Columbia Ministry of Forests, pp. 157–191.
Hebda R.J. 1995. British Columbia vegetation and climate history with focus on 6 ka B.P. Géographie Physique et Quaternaire, 49: 55–79.
Hendry M., Macciotta R., Martin D., and Reich B. 2015. Effect of Thompson River elevation on velocity and instability of Ripley Slide. Canadian Geotechnical Journal, 52(3): 257–267.
Holmes, J., Chambers, J., Donohue, S., Huntley, D., Bobrowsky, P., Meldrum, P. et al. 2018. The use of near surface geophysical methods for assessing the condition of transport infrastructure. Civil Engineering Research Association, Structural Integrity of Civil Engineering Infrastructure, Journal of Structural Integrity and Maintenance, Special Issue: 6.
Holmes J., Chambers J., Meldrum P., Wilkinson B., Boyd J., Williamson P., et al. 2020. 4-Dimensional electrical resistivity tomography for continuous, near-real time monitoring of a landslide affecting transport infrastructure in British Columbia, Canada. Near Surface Geophysics. In press.
Huntley, D., and Bobrowsky, P. 2014. Surficial geology and monitoring of the Ripley Slide, near Ashcroft, British Columbia, Canada. Geological Survey of Canada, Open File 7531, 21 pp.
Huntley, D., Bobrowsky, P., Zhang, Q., Zhang, X., Lv, Z., Hendry, M. et al. 2016. Application of optical fibre sensing real-time monitoring technology at the Ripley Landslide, near Ashcroft, British Columbia, Canada. In Canadian Geotechnical Society, GeoVancouver 2016 Annual Meeting Proceedings, Volume 13.
Huntley, D., Bobrowsky, P., and Best, M. 2017a. Combining terrestrial and waterborne geophysical surveys to investigate the internal composition and structure of a very slow-moving landslide near Ashcroft, British Columbia, Canada. In Proceedings of the 4th World Landslide Forum (ICL-IPL): Landslide Research and Risk Reduction for Advancing Culture and Living with Natural Hazards — Volume 2, Springer Nature. p. 15.
Huntley, D., Bobrowsky, P., Parry, N., Bauman, P., Candy, C., and Best, M. 2017b. Ripley Landslide: the geophysical structure of a slow-moving landslide near Ashcroft, British Columbia, Canada. In Geological Survey of Canada, Open File 8062, p. 59.
Huntley, D., Bobrowsky, P., Zhang, Q., Zhang, X., and Lv, Z. 2017c. Fibre Bragg grating and Brillouin optical time domain reflectometry monitoring manual for the Ripley Landslide, near Ashcroft, British Columbia. Geological Survey of Canada, Open File 8258, p. 66.
Huntley D., Bobrowsky P., Hendry M., Macciotta R., and Best M. 2019a. Multi-technique geophysical investigation of a very slow-moving landslide near Ashcroft, British Columbia, Canada. Journal of Environmental and Engineering Geophysics, 24(1): 84–110.
Huntley D., Bobrowsky P., Hendry M., Macciotta R., Elwood D., Sattler K., et al. 2019b. Application of multi-dimensional electrical resistivity tomography datasets to investigate a very slow-moving landslide near Ashcroft, British Columbia, Canada. Landslides, 16(5): 1033–1042.
Huntley, D., Bobrowsky, P., MacLeod, R., Cocking, R., Joseph, J., Sattler, K. et al. 2019c. PRIME installation in Canada: protecting national railway infrastructure by monitoring moisture in an active slow-moving landslide near Ashcroft, British Columbia. Geological Survey of Canada, Open File 8548, 1 poster.
Jaiswal P., van Westen C., and Jetten V. 2010. Quantitative assessment of direct and indirect landslide risk along transportation lines in southern India. Natural Hazards and Earth System Sciences, 10: 1253–1267.
Jespersen-Groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L., Marotí, G., and Nielsen, M. 2009. Disruption management in passenger railway transportation. In Robust and Online Large-scale Optimization. Springer-Verlag, pp. 399–421.
Johnsen T.F. and Brennand T.A. 2004. Late-glacial lakes in the Thompson basin, British Columbia: paleogeography and evolution. Canadian Journal of Earth Sciences, 41(11): 1367–1383.
Journault J., Macciotta R., Hendry M., Charbonneau F., Huntley D., and Bobrowsky P. 2018. Measuring displacements of the Thompson River valley landslides, south of Ashcroft, B.C., Canada, using satellite InSAR. Landslides, 15(4): 621–636.
Ko Ko C., Chowdhury R., and Flentje P. 2005. Hazard and risk assessment of rainfall-induced landsliding along a railway line. Quarterly Journal of Engineering Geology and Hydrogeology, 38: 197–213.
Laimer H. 2017. Anthropogenically induced landslides — a challenge for railway infrastructure in mountainous regions. Engineering Geology, 222: 92–101.
Le Meil, G. 2017. Characterization of a landslide-prone glaciolacustrine clay from the Thompson River Valley near Ashcroft, British Columbia. Masters of Science in Geological Engineering, Department of Civil and Environmental Engineering, University of Alberta, p. 182.
Lévy S., Jaboyedoff M., Locat J., and Demers D. 2012. Erosion and channel change as factors of landslides and valley formation in Champlain Sea Clays: the Chacoura River, Quebec, Canada. Geomorphology, 145–146: 12–18.
Lindgren J., Jonsson D., and Carlsson-Kanyama A. 2009. Climate adaptation of railways: lessons from Sweden. European Journal of Transport and Infrastructure Research, 9(2): 164–181.
Macciotta, R., Hendry, M., Martin, C.D., Elwood, D., Lan, H., Huntley, D. et al. 2014. Monitoring of the Ripley Slide in the Thompson River Valley, B.C. In Geohazards 6 Symposium, Proceedings and Abstracts Volume, Kingston, Ont., p. 1.
Martinović K., Gavin K., and Reale C. 2016. Development of a landslide susceptibility assessment for a rail network. Engineering Geology, 215: 1–9.
Mathewes R.W. and King M. 1989. Holocene vegetation, climate, and lake-level changes in the Interior Douglas-Fir biogeoclimatic zone, British Columbia. Canadian Journal of Earth Sciences, 26(9): 1811–1825.
Merritt A., Chambers J., Murphy W., Wilkinson P., West L., Gunn D., et al. 2014. 3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides, 11(4): 537–550.
Monger, J.W.H., and McMillan, W.J. 1989. Geology, Ashcroft, British Columbia (92 I). Geological Survey of Canada, Map 42, Scale 1:250,000: 1 sheet.
Newman P., Kenworthy J., and Glazebrook G. 2013. Peak car use and rise of global rail: why this is happening and what it means for large and small cities. Journal of Transportation Technologies, 3(4): 272–287.
Nicholson, A., Hamilton, E., Harper, W.L., and Wikeen, B.M. 1991. Bunchgrass Zone — Chapter 8. In Ecosystems of British Columbia. Edited by D. Meidinger and J. Pojar. BC Ministry of Forests, Special Report 6, pp. 125–137.
Petrova E. 2011. Critical infrastructure in Russia: geographical analysis of accidents triggered by natural hazards. Environmental Engineering and Management Journal, 10(1): 53–58.
Pham K., Lee H., Kim D., Lee I.-M., and Choi H. 2018. Influence of hydraulic characteristics on stability of unsaturated slope under transient seepage conditions. Landslides, 15: 1787–199.
Piegari E. and Di Maio R. 2013. Estimating soil suction from resistivity. Natural Hazards Earth Systems Science, 13: 2369–2379.
Porter, M., Savigny, K., Keegan, T., Bunce, C., and MacKay, C. 2002. Controls on stability of the Thompson River landslides. In Proceedings of the 55th Canadian Geotechnical Conference: Ground and Water — Theory to Practice. Canadian Geotechnical Society, pp. 1393–1400.
Renner, M., and Gardner, G. 2010. Global competitiveness in the rail and transit industry. Worldwatch Institute, p. 30.
RES3DINV. 2017. Rapid 3-D Resistivity & IP inversion using the least-squares method, Geoelectrical Imaging 2D & 3D Geotomo Software Version 3.14 [online]. Available from www.geotomosoft.com. [Accessed April 2019.]
Ronchetti F., Borgatti L., Cervi F., Gorgoni C., Piccinini L., Vincenzi V., and Corsini A. 2009. Groundwater processes in a complex landslide, northern Apennines, Italy. Natural Hazards and Earth System Sciences, 9: 895–904.
Ryder, J.M. 1976. Terrain inventory and quaternary geology, Ashcroft, British Columbia. Geological Survey of Canada, Paper 74, No. 79, 17.
Ryder J.M., Fulton R.J., and Clague J.J. 1991. The Cordilleran Ice Sheet and the glacial geomorphology of southern and central British Colombia. Géographie physique et Quaternaire, 45(3): 365–377.
Sa’adin S., Kaewunruen S., and Jaroszweski D. 2016. Risks of climate change with respect to the Singapore-Malaysia high speed rail system. Climate, 4: 65.
Sattler, K., Elwood, D., Hendry, M., Macciotta, R., Huntley, D., Bobrowsky, P., and Meldrum, P. 2018. Real-time monitoring of soil water content and suction in slow-moving landslide. In GeoEdmonton 2018, Annual Meeting Proceedings Volume 8.
Schafer, M., Macciotta, R., Hendry, M., Martin, D., Bobrowsky, P., Huntley, D. et al. 2015. Instrumenting and monitoring a slow moving landslide. In GeoQuebec 2015, Annual Meeting Proceedings Volume 7.
Schuster R. and Fleming R. 1986. Economic losses and fatalities due to landslides. Bulletin of the Association of Engineering Geologists, 23(1): 11–28.
Skrucany T., Kendra M., Skorupa M., Grencik J., and Figlus T. 2017. Comparison of chosen environmental aspects in individual road transport and railway passenger transport. Procedia Engineering, 192: 806–811.
Stanton R.B. 1898. The great land-slides on the Canadian Pacific Railway in British Columbia. Proceedings of Civil Engineers, 132(2): 1–20.
Sun S., Wang J., and Zheng J. 2013. Analysis of a railway embankment landslide induced by the Wenchuan Earthquake, China. Soil Mechanics and Foundation Engineering, 50(2): 56–60.
Tappenden, K.M. 2016. Impact of climate variability on landslide activity in the Thompson River valley near Ashcroft, B.C. In GeoVancouver 2016 Annual Meeting Proceedings Volume 10.
Thomas M., Mirus B., Collins B., Lu N., and Godt J. 2018. Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria. Landslides, 15: 1265–1277.
Uhlemann S., Chambers J., Wilkinson P., Maurer H., Merritt A., Meldrum P., et al. 2017. Four-dimensional imaging of moisture dynamics during landslide reactivation. Journal of Geophysical Research (Earth Surface), 122: 398–418.
Valenzuela P., Domínguez-Cuesta M., Garcia M., and Jiménez-Sánchez M. 2018. Rainfall thresholds for the triggering of landslides considering previous soil moisture conditions (Asturias, NW Spain). Landslides, 15: 273–282.
VanDine D. 1983. Drynoch landslide, British Columbia – a history. Canadian Geotechnical Journal, 20(1): 82–103.
Yang H., Dijst M., Witte P., van Ginkel H., and Wang J. 2019. Comparing passenger flow and time schedule data to analyse high-speed railways and urban networks in China. Urban Studies, 56(6): 1267–1287.
Zabuski L., Świdziński W., Kulczykowski M., Mrozek T., and Laskowicz I. 2017. Monitoring of landslides in the Brda river valley in Koronowo (Polish Lowlands). Environmental Earth Sciences, 73: 8609–8619.

Information & Authors

Information

Published In

cover image Canadian Journal of Earth Sciences
Canadian Journal of Earth Sciences
Volume 57Number 12December 2020
Pages: 1371 - 1391

History

Received: 1 October 2019
Accepted: 4 April 2020
Version of record online: 20 August 2020

Permissions

Request permissions for this article.

Key Words

  1. surficial mapping
  2. geophysical surveys
  3. landslide
  4. geohazard monitoring
  5. British Columbia

Mots-clés

  1. cartographie de surface
  2. levés géophysiques
  3. glissement de terrain
  4. surveillance des géorisques
  5. Colombie-Britannique

Authors

Affiliations

David Huntley [email protected]
Geological Survey of Canada, Vancouver, BC V6B 5J3, Canada.
Jessica Holmes
Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland.
British Geological Survey, Nottingham NG12 5GG, UK.
Peter Bobrowsky
Geological Survey of Canada, Sidney, BC V8L 4B2, Canada.
Jonathan Chambers
British Geological Survey, Nottingham NG12 5GG, UK.
Philip Meldrum
British Geological Survey, Nottingham NG12 5GG, UK.
Paul Wilkinson
British Geological Survey, Nottingham NG12 5GG, UK.
Shane Donohue
University College Dublin, Dublin 4, Ireland.
David Elwood
University of Saskatchewan, Saskatoon, SK V8L 4B2, Canada.
Kelvin Sattler
University of Saskatchewan, Saskatoon, SK V8L 4B2, Canada.
Michael Hendry
University of Alberta, Edmonton, AB V8L 4B2, Canada.
Renato Macciotta
University of Alberta, Edmonton, AB V8L 4B2, Canada.
Nicholas J. Roberts
Mineral Resources Tasmania, Department of State Growth, Rosny Park, 7001 Australia.

Notes

© 2020 Authors Donohue, Elwood, Sattler, Hendry, Macciotta, and Roberts; Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources; and the British Geological Survey. Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Scalable Platform for UAV Flight Operations, Data Capture, Cloud Processing and Image Rendering of Landslide Hazards and Surface Change Detection for Disaster-Risk Reduction
2. IPL Project 202: Landslide Monitoring Best Practices for Climate-Resilient Railway Transportation Corridors in Southwestern British Columbia, Canada
3. Surficial Geology and Geomorphology of the North Slide, Thompson River Valley, British Columbia, Canada: Application of Fundamental Geoscience Information to Interpretations of Geospatial Monitoring Results
4. Long-term geoelectrical monitoring of landslides in natural and engineered slopes
5. Updated Understanding of the Thompson River Valley Landslides Kinematics Using Satellite InSAR
6. Data Analysis of the Effect of Different Nanomaterials on Antislide Pile Performance in Railway Landslides
7. Updated Understanding of the Ripley Landslide Kinematics Using Satellite InSAR
8. Application of petrophysical relationships to electrical resistivity models for assessing the stability of a landslide in British Columbia, Canada
9. Combining geophysical methods, drilling, and monitoring techniques to investigate carbonaceous shale landslides along a railway line: a case study on Jiheng Railway, China
10. Preventive geophysical surveys for the evaluation of the archaeological risk: examples from the region of the ancient Pylos (western Peloponnese, Greece)
11. Benchmarked RADARSAT-2, SENTINEL-1 and RADARSAT Constellation Mission Change-Detection Monitoring at North Slide, Thompson River Valley, British Columbia: ensuring a Landslide-Resilient National Railway Network
12. Quantifying the contribution of matric suction on changes in stability and displacement rate of a translational landslide in glaciolacustrine clay
13. Field testing innovative differential geospatial and photogrammetric monitoring technologies in mountainous terrain near Ashcroft, British Columbia, Canada

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Earth Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media