Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Structure from motion used to revive archived aerial photographs for geomorphological analysis: an example from Mount Meager volcano, British Columbia, Canada

Publication: Canadian Journal of Earth Sciences
11 March 2021

Abstract

High-resolution topographic modeling has become more accessible due to the development of structure from motion (SfM)-image-matching algorithms in digital photogrammetry. Large archival databases of historical aerial photographs are available in university, public, and government libraries, commonly as paper copies. The photographs can be in poor condition (i.e., deformed by humidity, scratched, or annotated). In addition, the negatives, as well as metadata, may be missing. Processing such photographs using classic stereo-photogrammetry is difficult and, in many instances, impossible. SfM can be applied to these photosets to access the valuable archive of geomorphic changes over the past century. In this paper, we illustrate the utility of the SfM technique using 568 digitized vertical aerial photographs of Mount Meager volcano, located in southwestern British Columbia, Canada. We use the aerial photographs, which span the period from 1947 to 2006, to track glaciers and glacier–landslide interactions on the volcano. Over this period, glaciers have thinned and retreated, interrupted by minor advances in the 1960s and 1970s. Landslides are frequent on the volcano and contribute to debris cover on the glaciers affecting the ablation process. SfM processing of the aerial photographs allowed us to unlock geomorphic information and reconstruct landscape change that would otherwise have been impossible. The results from SfM provide a visually effective way of presenting landscape change to a broad public audience, as a form of virtual geoheritage. The approach can thus be broadly applied in scientific and professional practices for improving land planning and hazard management.

Résumé

La modélisation topographique de haute résolution est devenue plus accessible en raison du développement d’algorithmes de jumelage d’images de type « structure from motion » (SfM, structure acquise à partir d’un mouvement) en photogrammétrie numérique. D’imposantes bases de données d’archives de photographies aériennes sont disponibles dans les bibliothèques universitaires, publiques et gouvernementales, généralement en version papier. Ces photographies peuvent être en mauvais état (c.-à-d., déformées par l’humidité, égratignées ou annotées). En outre, des négatifs, ainsi que des métadonnées, peuvent manquer à l’appel. Le traitement de telles photographies par stéréophotogrammétrie classique est difficile, voire impossible dans bien des cas. La SfM peut être appliquée à ses ensembles de photos pour accéder à l’important registre de changements géomorphologiques durant le siècle passé qu’ils renferment. Nous illustrons l’utilisation de la méthode SfM en utilisant 568 photographies aériennes verticales numérisées du volcan du mont Meager, dans le sud-ouest de la Colombie-Britannique (Canada). Nous utilisons les photographies aériennes, qui couvrent la période de 1947 à 2006, pour suivre les glaciers et les interactions entre glaciers et glissements de terrain sur le volcan. Cette période est marquée par l’amincissement et le retrait des glaciers, interrompus par des avancées mineures dans les années 1960 et 1970. Les glissements de terrain sont fréquents sur le volcan et participent à l’accumulation d’un couvert de débris sur les glaciers qui influence le processus d’ablation. Le traitement SfM des photographies aériennes nous a permis d’extraire de l’information géomorphologique et de reconstituer les changements du paysage, ce qui n’aurait pas été possible autrement. Les résultats de SfM offrent un moyen visuellement efficace de présenter des modifications du paysage au grand public, comme géopatrimoine virtuel. L’approche peut ainsi être appliquée largement dans les domaines scientifique et professionnel pour améliorer l’aménagement du territoire et la gestion des risques. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Anderson L.S. and Anderson R.S. 2016. Modeling debris-covered glaciers: Response to steady debris deposition. Cryosphere, 10: 1105–1124.
Anderson R.S., Anderson L.S., Armstrong W.H., Rossi M.W., and Crump S.E. 2018. Glaciation of alpine valleys: The glacier – debris-covered glacier – rock glacier continuum. Geomorphology, 311: 127–142.
ASPRS. 2014. ASPRS positional accuracy standards for digital geospatial data. Photogrammetric Engineering & Remote Sensing, 81: A1–A26.
Bakker M. and Lane S.N. 2017. Archival photogrammetric analysis of river-floodplain systems using Structure from Motion (SfM) methods. Earth Surface Processes and Landforms, 42: 1274–1286.
Bertotto, S., Perotti, L., Bacenetti, M., Damiano, E., Chiarle, M., and Giardino, M. 2015. Integrated geomatic techniques for assessing morphodynamic processes and related hazards in glacial and periglacial areas (western Italian Alps) in a context of climate change. In Engineering geology for society and territory - Volume 1: Climate change and engineering geology. Edited by G. Lollino, A. Manconi, J. Clague, W. Shan, and M. Chiarle. pp. 1–572.
Bjørk A.A., Kjær K.H., Korsgaard N.J., Khan S.A., Kjeldsen K.K., Andresen C.S., et al. 2012. An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nature Geoscience, 5: 427–432.
Blair R.W. 1994. Moraine and valley wall collapse due to rapid deglaciation in Mount Cook National Park, New Zealand. Mountain Research and Development, 14: 347–358.
Bovis M.J. 1990. Rock-slope deformation at Affliction Creek, southern Coast Mountains, British Columbia. Canadian Journal of Earth Sciences, 27: 243–254.
Bovis M.J. and Evans S.G. 1996. Extensive deformations of rock slopes in southern Coast Mountains, southwest British Columbia, Canada. Engineering Geology, 44: 163–182.
Carrivick, J.L., Smith, M.W., and Quincey, D.J. 2016. Structure from motion in geosciences. Wiley Blackwall, Pondicherry, India.
Carter M. 1932. Exploration in the Lillooet River Watershed. The Canadian Alpine Journal, 21: 19–28.
Cecchi E.M.C., Avest J.-M., and van Wyk de Vries B. 2002. Videogrammetric reconstruction applied to volcanology: perspective for a new measurement technique in volcano monitoring. Image Analysis & Stereology, 21: 31–36.
Cecchi E., van Wyk de Vries B., Lavest J.M., Harris A., and Davies M. 2003. N-view reconstruction: A new method for morphological modelling and deformation measurement in volcanology. Journal of Volcanology and Geothermal Research, 123: 181–201.
Chandler J. 1999. Effective application of automated digital photogrammetry for geomorphological research. Earth Surface Processes and Landforms, 24: 51–63.
Clague J.J., Evans S.G., Rampton V.N., and Woodsworth G.J. 1995. Improved age estimates for the White River and Bridge River tephras, western Canada. Canadian Journal of Earth Sciences, 32(8): 1172–1179.
Cordilleran Geoscience. 2018. The Village of Lions Bay: A natural hazards assessment area strategy for coastal, creek and hillslope hazards. Lions Bay. Available from https://www.lionsbay.ca/sites/2/files/docs/related/lions_bay_nhaa_final_v5maps.pdf.
Derrien A., Villeneuve N., Peltier A., and Beauducel F. 2015. Retrieving 65 years of volcano summit deformation from multitemporal structure from motion: The case of Piton de la Fournaise (La Réunion Island). Geophysical Research Letters, 42: 6959–6966.
Evans, S.G. 1987. A rock avalanche from the peak of Mount Meager, British Columbia. Current Research, Part A, Geological Survey of Canada Paper 87-1 A, pp. 929–934.
Fischer L., Kääb A., Huggel C., and Noetzli J. 2006. Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Natural Hazards and Earth System Sciences, 6: 761–772.
Fonstad M.A., Dietrich J.T., Courville B.C., Jensen J.L., and Carbonneau P.E. 2013. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38: 421–430.
Friele P.A. and Clague J.J. 2004. Large Holocene landslides from Pylon Peak, southwestern British Columbia. Canadian Journal of Earth Sciences, 41: 165–182.
Friele P., Clague J.J., Simpson K., and Stasiuk M. 2005. Impact of a Quaternary volcano on Holocene sedimentation in Lillooet River valley, British Columbia. Sedimentary Geology, 176: 305–322.
Friele P.A., Jakob M., and Clague J.J. 2008. Hazard and risk from large landslides from Mount Meager volcano, British Columbia, Canada. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2: 48–64.
Furukawa Y. and Ponce J. 2010. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32: 1362–1376.
Girardeau-Montaut, D. 2018. Cloud Compare. Version 2.8.1. Available from http://www.cloudcompare.org/.
Gomarasca, M.A. 2009. Basics of geomatics. Springer, Dordrecht, the Netherlands.
Gomez C. 2014. Digital photogrammetry and GIS-based analysis of the bio-geomorphological evolution of Sakurajima Volcano, diachronic analysis from 1947 to 2006. Journal of Volcanology and Geothermal Research, 280: 1–13.
Gomez C., Hayakawa Y., and Obanawa H. 2015. A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology, 242: 11–20.
Gruber S. and Haeberli W. 2007. Permafrost in steep bedrock slopes and its temperature‐related destabilization following climate change. Journal of Geophysical Research, 112: 1–10.
Guthrie R.H., Friele P., Allstadt K., Roberts N., Evans S.G., Delaney K.B., et al. 2012. The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment. Natural Hazards and Earth System Sciences, 12: 1277–1294.
Haley, J., and Friele, P. 2018. Landslide risk management for the construction and operation of the Upper Lillooet River hydroelectric facility near Pemberton, BC. In Geohazards 7: Engineering Resiliency in a Changing Climate, Canmore, Alberta.
Hetherington, R. 2014. Slope Stability Analysis of Mount Meager, South-western British Columbia. Master’s Thesis, Michigan Technological University. 68pp.
Hickson C.J., Russell J.K., and Stasiuk M.V. 1999. Volcanology of the 2360 B.P. eruption of Mount Meager Volcanic Complex, British Columbia, Canada: Implications for hazards from eruptions in topographically complex terrain. Bulletin of Volcanology, 60: 489–507.
Hirschmüller H., Buder M., and Ernst I. 2012. Memory efficient semi-global matching. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I-3: 371–376.
Holm K., Bovis M., and Jakob M. 2004. The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology, 57: 201–216.
James M.R. and Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117: 1–17.
James M.R., Robson S., d’Oleire-Oltmanns S., and Niethammer U. 2017a. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology, 280: 51–66.
James M.R., Robson S., and Smith M.W. 2017b. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surface Processes and Landforms, 42: 1769–1788.
James M., Carr B., D’Arcy F., Diefenbach A., Dietterich H., Fornaciai A., et al. 2020. Volcanological applications of unoccupied aircraft systems (UAS): Developments, strategies, and future challenges. Volcanica, 3: 67–114.
Jordan, R.P. 1994. Debris flows in the Southern Coast Mountains, British Columbia: dynamic behaviour and physical properties. Ph.D. thesis, University of British Columbia. pp. 1–271.
Koch J., Menounos B., and Clague J.J. 2009. Glacier change in Garibaldi Provincial Park, southern Coast Mountains, British Columbia, since the Little Ice Age. Global and Planetary Change, 66: 161–178.
Krimmel R.M. 1999. Analysis of difference between direct and geodetic mass balance measurements at South Cascade Glacier, Washington. Geografiska Annaler, Series A: Physical Geography, 81: 653–658.
Lane S.N., James T.D., and Crowell M.D. 2000. Application of digital photogrammetry to complex topography for geomorphological research. The Photogrammetric Record, 16: 793–821.
Linder, W. 2009. Digital photogrammetry: a practical course. Springer, Berlin.
Lowe, D.G. 1999. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Vol. 2. pp. 1150–1157.
Lucchesi S., Giardino M., and Perotti L. 2013. Applications of high-resolution images and DTMs for detailed geomorphological analysis of mountain and plain areas of NW Italy. European Journal of Remote Sensing, 46: 216–233.
McNeely, R., and McCuaig, S.J. 1991. Geological Survey of Canada radiocarbon dates XXIX. Geological Survey of Canada, Paper No. 89‐7.
Menounos B., Clague J.J., Clarke G.K.C., Marcott S.A., Osborn G., Clark P.U., et al. 2013. Did rock avalanche deposits modulate the late Holocene advance of Tiedemann Glacier, southern Coast Mountains, British Columbia, Canada? Earth and Planetary Science Letters, 384: 154–164.
Mertes J.R., Gulley J.D., Benn D.I., Thompson S.S., and Nicholson L.I. 2017. Using structure-from-motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery. Earth Surface Processes and Landforms, 42: 2350–2364.
Micheletti, N., Chandler, J.H., and Lane, S.N. 2015. Structure from motion (SFM) photogrammetry. In Geomorphological techniques. [Online edition.] Edited by S. Cook, L. Clarke, and J. Nield. British Society for Geomorphology, London. pp. 1–12.
Mokievsky-Zubok O. 1977. Glacier-caused slide near Pylon Peak, British Columbia. Canadian Journal of Earth Sciences, 14(11): 2657–2662.
Mölg N. and Bolch T. 2017. Structure-from-Motion using historical aerial images to analyse changes in glacier surface elevation. Remote Sensing, 9: 1021.
Natural Resources Canada. 2013. Canadian Digital Elevation Model Product Specifications. Edition 1.1. Government of Canada, Natural Resources Canada, Map Information Branch. GeoGratis Client Services, 2638: 11.
Nevin Sadlier-Brown Goodbrand Ltd. (NSBG). 1980. Report gt14 for B.C Hydro and Power Authority. Meager Mountain Geothermal Project Status of Environmental Studies Baseline data Collection Program 1980.
Nevin Sadlier-Brown Goodbrand Ltd. (NSBG). 1981. Report gt20 for B.C. Hydro and Power Authority. Meager Mountain Geothermal Project Status of Environmental Studies Baseline Data Collection Program 1980.
Onsel, I.E., Donati, D., Stead, D., and Chang, O. 2018. Applications of virtual and mixed reality in rock engineering. In ARMA 52nd US Rock Mechanics/Geomechanics Symposium, 17–20 June 2018, Seattle, Washington.
Pogliotti, P., Cremonese, E., Morra di Cella, U., Gruber, S., and Giardino, M. 2008. Thermal diffusivity variability in alpine permafrost rock walls. In The 9th International Conference on Permafrost, Fairbanks, Alaska, 29th June 2008 – 3rd July 2008. pp. 1427–1432.
Rault C., Dewez T.J.B., and Aunay B. 2020. Structure-From-Motion processing of aerial archive photographs: sensitivity analyses pave the way for quantifying geomorphological changes since 1978 in la Réunion Island. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2-2020: 773–780.
Read, P.B. 1978. Geology of Meager Creek Geothermal Area, British Columbia. Geological Survey of Canada Open File 603, map, 1 sheet, scale 1:20000.
Read, P. 1990. Mount Meager complex, Garibaldi Belt, southwestern British Columbia. Geoscience Canada, 17:167–170. Available from https://journals.lib.unb.ca/index.php/GC/article/view/3672.
Remondino F., Spera M.G., Nocerino E., Menna F., and Nex F. 2014. State of the art in high density image matching. The Photogrammetric Record, 29: 144–166.
Roberti, G. 2018. Mount Meager, a glaciated volcano in a changing cryosphere: hazards and risk challenges. Thesis, Simon Fraser University.
Roberti, G., Ward, B.C., van Wyk de Vries, B., Williams-Jones, G., Falorni, G., Iannacone, J.P., et al. 2016. Sector collapse and fumarole activity detected at Mt Meager, Canada. In ILP Topo-Europe 2016 from deep earth to surface: integrating lithosphere dynamics with rift basins and margins: A joint meeting of the TOPO-EUROPE Programme and ILP Task Forces Sedimentary Basins (VI), Subducted Lithosphere (IV), Magma and lithosphere (II), 5–6 October 2016, Clermont Ferrand, France.
Roberti, G., Ward, B., van Wyk de Vries, B., Falorni, G., Menounos, B., Friele., et al. 2018a. Landslides and glacier retreat at Mt. Meager volcano: Hazard and risk challenges. In Geohazards7 Engineering Resiliency in a Changing Climate, 3–6 June, 2018, Canmore, Alberta.
Roberti G., Ward B., van Wyk de Vries B., Friele P., Perotti L., Clague J.J., and Giardino M. 2018b. Precursory slope distress prior to the 2010 Mount Meager landslide, British Columbia. Landslides, 15: 637–647.
Simpson K.A., Stasiuk M., Shimamura K., Clague J.J., and Friele P. 2006. Evidence for catastrophic volcanic debris flows in Pemberton Valley, British Columbia. Canadian Journal of Earth Sciences, 43(6): 679–689.
Snavely N., Seitz S.M., and Szeliski R. 2008. Modeling the world from Internet photo collections. International Journal of Computer Vision, 80: 189–210.
Stasiuk M., Russell J.K., and Hickson C. 1996. Distribution, nature, and origins of the 2400 BP eruption products of Mount Meager, British Columbia: linkages between magma chemistry and eruption. Geological Survey of Canada Bulletin, 486: 1–27.
Szeliski, R. 2010. Computer vision: algorithms and applications. Springer Textbooks in Computer Science, London.
Tennant C. and Menounos B. 2013. Glacier change of the Columbia Icefield, Canadian Rocky Mountains, 1919-2009. Journal of Glaciology, 59: 671–686.
Tibaldi A., Bonali F.L., Vitello F., Delage E., Nomikou P., Antoniou V., et al. 2020. Real world–based immersive Virtual Reality for research, teaching and communication in volcanology. Bulletin of Volcanology, 82: 38.
Ullman, S. 1979. The interpretation of structure from motion. Proceedings of the Royal Society of London, Series B: Biological Sciences, 203: 405–426.
Vereb V., van Wyk de Vries B., Hagos M., and Karatson D. 2020. Geoheritage and resilience of Dallol and the northern Danakil depression in Ethiopia. Geoheritage, 12: 82.
Warwick, R.K., Williams-Jones, G., and Witter, J. 2019. Comprehensive volcanic-hazard map for Mount Meager Volcano, southwestern British Columbia (Part of NTS 092J). Geoscience BC Summary of Activities 2018 - Energy and Water, Geoscience BC, Report 2019-2. pp. 85–94.
Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., and Reynolds J.M. 2012. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300–314.

Supplementary Material

Supplementary data (cjes-2020-0140suppla.docx)
Supplementary data (cjes-2020-0140supplb.ods)

Information & Authors

Information

Published In

cover image Canadian Journal of Earth Sciences
Canadian Journal of Earth Sciences
Volume 58Number 12December 2021
Pages: 1253 - 1267

History

Received: 26 July 2020
Accepted: 12 January 2021
Accepted manuscript online: 11 March 2021
Version of record online: 11 March 2021

Permissions

Request permissions for this article.

Key Words

  1. historical aerial photographs
  2. structure from motion
  3. glacier change
  4. landslides
  5. debris-covered glaciers

Mots-clés

  1. photographies aériennes passées
  2. « structure from motion »
  3. modification de glaciers
  4. glissements de terrain
  5. glaciers couverts de débris

Authors

Affiliations

Gioachino Roberti [email protected]
CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Université Clermont Auvergne, Aubiere Cedex, France.
Earth Sciences Department, Simon Fraser University, Burnaby, British Columbia, Canada.
Brent C. Ward
Earth Sciences Department, Simon Fraser University, Burnaby, British Columbia, Canada.
Benjamin van Wyk deVries
CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Université Clermont Auvergne, Aubiere Cedex, France.
Luigi Perotti
Earth Sciences Department, University of Torino, Torino, Italy.
Marco Giardino
Earth Sciences Department, University of Torino, Torino, Italy.
Pierre A. Friele
Cordilleran Geoscience, Squamish, British Columbia, Canada.
John J. Clague
Earth Sciences Department, Simon Fraser University, Burnaby, British Columbia, Canada.
Brian Menounos
Geography Program and Natural Resources and Environmental Studies Institute, University of Northern British Columbia, British Columbia, Canada.
Leif S. Anderson
Earth Sciences Department, Simon Fraser University, Burnaby, British Columbia, Canada.
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany.
Stefano Freschi
Earth Sciences Department, University of Torino, Torino, Italy.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Historical Structure from Motion (HSfM): Automated processing of historical aerial photographs for long-term topographic change analysis
2. Applications of Image-Based Computer Vision for Remote Surveillance of Slope Instability

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Earth Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media