Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Mandibular force profiles and tooth morphology in growth series of Albertosaurus sarcophagus and Gorgosaurus libratus (Tyrannosauridae: Albertosaurinae) provide evidence for an ontogenetic dietary shift in tyrannosaurids1

Publication: Canadian Journal of Earth Sciences
26 January 2021


The albertosaurines Albertosaurus sarcophagus and Gorgosaurus libratus are among the best represented tyrannosaurids, known from nearly complete growth series. These specimens provide an opportunity to study mandibular biomechanical properties and tooth morphology to infer changes in feeding behaviour and bite force through ontogeny in tyrannosaurids. Mandibular force profiles reveal that the symphyseal region of albertosaurines is consistently stronger in bending than the mid-dentary region, indicating that the anterior extremity of the jaws played an important role in prey capture and handling through ontogeny. The symphyseal region was better adapted to withstand torsional stresses than in most non-avian theropods, but not to the extent seen in Tyrannosaurus rex, suggesting that albertosaurine feeding behaviour may have involved less bone crushing or perhaps relatively smaller prey than in Tyrannosaurus rex. The constancy of these biomechanical properties at all known growth stages indicates that although albertosaurines maintained a similar feeding strategy through ontogeny, prey size/type had to change between juvenile and mature individuals. This ontogenetic dietary shift likely happened when individuals reached a mandibular length of ∼58 cm, a size at which teeth shift from ziphodont to incrassate in shape and bite force begins to increase exponentially. The fact that large albertosaurines were capable of generating bite forces equivalent to similar-sized tyrannosaurines suggests that no significant differences in jaw-closing musculature existed between the two clades and that the powerful bite of Tyrannosaurus rex is the result of its large body size rather than of unique adaptations related to a specialized ecology.

Graphical Abstract


Les albertosaurinés Albertosaurus sarcophagus et Gorgosaurus libratus figurent parmi les tyrannosauridés les mieux représentés, les connaissances à leur sujet reposant sur des séries de croissance quasi complètes. Ces spécimens offrent l’occasion d’étudier les propriétés biomécaniques des mandibules et la morphologie des dents pour en inférer des changements du mode d’alimentation et de la force de morsure au fil de l’ontogenèse chez les tyrannosauridés. Des profils de force des mandibules révèlent que la région symphysaire des albertosaurinés est toujours plus résistante en flexion que la région dentaire médiane, ce qui indique que l’extrémité antérieure des mâchoires jouait un important rôle dans la capture et la manipulation des proies tout au long de l’ontogenèse. La région symphysaire des albertosaurinés était mieux adaptée à résister aux contraintes en torsion que celle de la plupart des théropodes non aviaires, mais pas autant que celle de Tyrannosaurus rex, ce qui indiquerait que le broyage d’os était possiblement un aspect moins important de leur comportement d’alimentation ou que leurs proies étaient plus petites que celles de Tyrannosaurus rex. La constance de ces propriétés biomécaniques à toutes les étapes connues de la croissance indique que, bien que la stratégie d’alimentation des albertosaurinés ne variait pas beaucoup au fil de l’ontogenèse, la taille et le type de proies acquises devaient changer entre les individus juvéniles et matures. Cette transition ontogénétique de l’alimentation se produisait vraisemblablement lorsque les individus atteignaient une longueur des mandibules de ∼58 cm, taille à laquelle la forme des dents passe de ziphodonte à épaissie et la force de morsure commence à augmenter de façon exponentielle. Le fait que les grands albertosaurinés étaient capables de produire des forces de morsure équivalentes à celles de tyrannosaurinés de même taille donne à penser qu’il n’y avait aucune différence significative de la musculature de fermeture des mâchoires entre les deux clades et que la puissante morsure de Tyrannosaurus rex est le résultat de sa grande taille plutôt que d’adaptations singulières reliées à une spécialisation écologique. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.


Abler W.L. 1992. The serrated teeth of tyrannosaurid dinosaurs and the biting structures in other animals. Paleobiology, 18: 161–183.
Abler, W.L. 1997. Tooth serrations in carnivorous dinosaurs. In Encyclopedia of Dinosaurs. Edited by P.J. Currie and K. Padian. Academic Press, San Diego, Calif. pp. 740–743.
Abler W.L. 1999. The teeth of the tyrannosaurs. Scientific American, 281: 50–51.
Abler, W.L. 2001. A kerf-and-drill model of tyrannosaur tooth serrations. In Mesozoic Vertebrate Life. Edited by D.H. Tanke and K. Carpenter. Indiana University Press, Bloomington, Ind. pp. 84–89.
Amiot R., Buffetaut E., Lécuyer C., Wang X., Boudad L., Ding Z., et al. 2010. Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods. Geology, 38: 139–142.
Auffenberg, W. 1981. The behavioral ecology of the Komodo monitor. University Press of Florida, Gainesville, Fla.
Bakker, R.T. 1997. Raptor family values: Allosaur parents brought giant carcasses into their lair to feed their young. In Dinofest International. Edited by D.L. Wolberg, E. Stump, and G.D. Rosenberg. Academy of Natural Sciences, Philadelphia. pp. 51–63.
Barrett P.M. and Rayfield E.J. 2006. Ecological and evolutionary implications of dinosaur feeding behaviour. Trends in Ecology & Evolution, 21: 217–224.
Bates K.T. and Falkingham P.L. 2018. Correction to ‘Estimating maximum bite performance in Tyrannosaurus rex using multibody dynamics. Biology Letters, 14(4): 20180160.
Bell P.R. and Currie P.J. 2010. A tyrannosaur jaw bitten by a confamilial: scavenging or fatal agonism? Lethaia, 43: 278–281.
Biknevicius A.R. and Ruff C.B. 1992. The structure of the mandibular corpus and its relationship to feeding behaviours in extant carnivorans. Journal of Zoology, 228: 479–507.
Blanco R.E., Jones W.W., and Grinspan G.A. 2011. Fossil marsupial predators of South America (Marsupialia, Borhyaenoidea): bite mechanics and palaeobiological implications. Alcheringa: An Australasian Journal of Palaeontology, 35: 377–387.
Bonaparte J.F. 1985. A horned Cretaceous carnosaur from Patagonia. National Geographic Research, 205: 149–151.
Brusatte S.L. and Carr T.D. 2016. The phylogeny and evolutionary history of tyrannosauroid dinosaurs. Scientific Reports, 6: 20252.
Campbell K.M. and Santana S.E. 2017. Do differences in skull morphology and bite performance explain dietary specialization in sea otters? Journal of Mammalogy, 98: 1408–1416.
Carpenter, K. 1998. Evidence of predatory behavior by carnivorous dinosaurs. In GAIA: Aspects of Theropod Paleobiology. Volume 15. Edited by B.P. Pérez-Moreno, T.J. Holtz, Jr., J.L. Sanz, and J. Moratalla. Museu Nacional de História Natural, Portugal. pp. 135–144.
Carr T.D. 1999. Craniofacial ontogeny in Tyrannosauridae (Dinosauria, Coelurosauria). Journal of Vertebrate Paleontology, 19: 497–520.
Carr T.D. 2020. A high-resolution growth series of Tyrannosaurus rex obtained from multiple lines of evidence. PeerJ, 8: e9192.
Carr T.D. and Williamson T.E. 2004. Diversity of late Maastrichtian Tyrannosauridae (Dinosauria: Theropoda) from western North America. Zoological Journal of the Linnean Society, 142: 479–523.
Carr T.D. and Williamson T.E. 2010. Bistahieversor sealeyi, gen. et sp. nov., a new tyrannosauroid from New Mexico and the origin of deep snouts in Tyrannosauroidea. Journal of Vertebrate Paleontology, 30: 1–16.
Carr T.D., Varricchio D.J., Sedlmayr J.C., Roberts E.M., and Moore J.R. 2017. A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Scientific Reports, 7: 1e11.
Chin K., Tokaryk T.T., Erickson G.M., and Calk L.C. 1998. A king-sized theropod coprolite. Nature, 393: 680–682.
Chin K., Eberth D.A., Schweitzer M.H., Rando T.A., Sloboda W.J., and Horner J.R. 2003. Remarkable preservation of undigested muscle tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. PALAIOS, 18: 286–294.
Christiansen P. 2007. Evolutionary implications of bite mechanics and feeding in bears. Journal of Zoology, 272: 423–443.
Coria R.A. and Salgado L. 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature, 377: 224–226.
Cost I., Middleton K.M., Sellers K.C., Echols M.S., Witmer L.M., Davis J.L., and Holliday C.M. 2020. Palatal biomechanics and its significance for cranial kinesis in Tyrannosaurus rex. The Anatomical Record, 303: 999–1017.
Cott H.B. 1961. Scientific results of an inquiry into the ecology and economic status of the Nile crocodile (Crocodilus niloticus) in Uganda and Northern Rhodesia. Transactions of the Zoological Society of London, 29: 211–356.
Cuff A.R. and Rayfield E.J. 2013. Feeding mechanics in spinosaurid theropods and extant crocodilians. PLoS One, 8(5): e65295.
Currie P.J. 2003a. Allometric growth in tyrannosaurids (Dinosauria: Theropoda) from the Upper Cretaceous of North America and Asia. Canadian Journal of Earth Sciences, 40(4): 651–665.
Currie P.J. 2003b. Cranial anatomy of tyrannosaurid dinosaurs from the late Cretaceous Alberta, Canada. Acta Palaeontologica Polonica, 48: 191–226.
DePalma R.A., Burnham D.A., Martin L.D., Rothschild B.M., and Larson P.L. 2013. Physical evidence of predatory behavior in Tyrannosaurus rex. Proceedings of the National Academy of Sciences of Sciences, 110: 12560–12564.
Depéret C. 1896. Notes sur les dinosauriens sauropodes et théropodes du Crétacé supérieur de Madagascar. Bulletin de la Société Géologique de France, 21: 176–194.
Eberth D.A. and Currie P.J. 2010. Stratigraphy, sedimentology, and taphonomy of the Albertosaurus bonebed (upper Horseshoe Canyon Formation; Maastrichtian), southern Alberta, Canada. Canadian Journal of Earth Sciences, 47: 1119–1143.
Erickson G.M. and Olson K.H. 1996. Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications. Journal of Vertebrate Paleontology, 16: 175–178.
Erickson G.M., Lappin A.K., and Vliet K.A. 2003. The ontogeny of bite-force performance in American alligator (Alligator mississippiensis). Journal of Zoology, 260: 317–327.
Erickson G.M., Lappin A.K., Parker T., and Vliet K.A. 2004. Comparison of bite-force performance between long-term captive and wild American alligators (Alligator missippiensis). Journal of Zoology, 262: 21–28.
Erickson G.M., Van Kirk S.D., Su J., Levenston M.E., Caler W.E., and Carter D.R. 1996. Bite-force estimation for Tyrannosaurus rex from tooth-marked bones. Nature, 382: 706–708.
Erickson G.M., Gignac P.M., Steppan S.J., Lappin A.K., Vliet K.A., Brueggen J.D., et al. 2012. Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation. PLoS One, 7: e31781.
Farlow J.O., Brinkman D.L., Abler W.L., and Currie P.J. 1991. Size, shape, and serration density of theropod dinosaur lateral teeth. Modern Geology, 16: 161–197.
Fowler D.W. and Sullivan R.M. 2006. A ceratopsid pelvis with toothmarks from the Upper Cretaceous Kirtland Formation, New Mexico: evidence of late Campanian tyrannosaurid feeding behavior. New Mexico Museum of Natural History and Science Bulletin, 35: 127–130.
Gignac P.M. and Erickson G.M. 2015. Ontogenetic changes in dental form and tooth pressures facilitate developmental niche shifts in American alligators. Journal of Zoology, 295: 132–142.
Gignac P.M. and Erickson G.M. 2017. The biomechanics behind extreme osteophagy in Tyrannosaurus rex. Scientific Reports, 7: 2012.
Gignac P.M., Makovicky P.J., Erickson G.M., and Walsh R.P. 2010. A description of Deinonychus antirrhopus bite marks and estimates of bite force using tooth indentation simulations. Journal of Vertebrate Paleontology, 30: 1169–1177.
Greaves, W.S. 1995. Functional predictions from theoretical models of the skull and jaws in reptiles and mammals. In Functional Morphology in Vertebrate Paleontology. Edited by J. Thomason. Cambridge University Press, Melbourne. pp. 99–115.
Grigg, G., and Kirshner, D. 2015. Biology and Evolution of Crocodylians. Cornell University Press, Ithaca, NY.
Hammer Ø., Harper A.T., and Ryan P.D. 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: art 4.
Holtz, T.J., Jr. 2003. Dinosaur predation, evidence and ecomorphology. In Predator-Prey Interactions in the Fossil Record. Edited by P.H. Kelley, M. Kowalewski, and T.A. Hansen. Kluwer Academic/Plenum Publishers, NY. pp. 325–340.
Holtz T.J. Jr. 2004. Taxonomic diversity, morphological disparity, and guild structure in theropod carnivore communities: implications for paleoecology and life history strategies in tyrant dinosaurs [Abstracts of papers]. Journal of Vertebrate Paleontology, 24(Suppl.): 72A.
Holtz T.J. Jr. 2021. Theropod guild structure and the tyrannosaurid niche assimilation hypothesis: implications for predatory dinosaur macroecology and ontogeny in later Late Cretaceous Asiamerica. Canadian Journal of Earth Sciences.
Hone D.W.E. and Rauhut O.W.M. 2010. Feeding behaviour and bone utilization by theropod dinosaurs. Lethaia, 43: 232–244.
Hone D.W.E. and Watabe M. 2010. New information on the feeding behavior of tyrannosaurs. Acta Palaeontologica Polonica, 55: 627–634.
Hone D.W.E. and Tanke D.H. 2015. Pre- and postmortem tyrannosaurid bite marks on the remains of Daspletosaurus (Tyrannosaurinae: Theropoda) from Dinosaur Provincial Park, Alberta, Canada. PeerJ, 3: e885.
Hylander W.L. 1984. Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. American Journal of Physical Anthropology, 64: 1–46.
Jacobsen A.R. 1998. Feeding behaviour of carnivorous dinosaurs as determined by tooth marks on dinosaur bones. Historical Biology, 13: 17–26.
Jacobsen, A.R. 2001. Tooth-marked small theropod bone: an extremely rare trace. In Mesozoic Vertebrate Life. Edited by D.H. Tanke, K. Carpenter, and M.W. Skrepnick. Indiana University Press, Bloomington, IN. pp. 58–63.
Jasinski, S.E. 2011. Biomechanical modeling of Coelophysis bauri: possible feeding methods and behavior of a Late Triassic theropod. In Fossil Record 3. Edited by R.M. Sullivan, S.G. Lucas, and J.A. Spielmann. New Mexico Museum of Natural History and Science Bulletin 53. pp. 195–201.
Lambe L.M. 1914. On a new genus and species of carnivorous dinosaur from the Belly River Formation of Alberta, with a description of Stephanosaurus marginatus from the same horizon. Ottawa Naturalist, 28: 13–20.
Larson D.W. 2008. Diversity and variation of theropod dinosaur teeth from the uppermost Santonian Milk River Formation (Upper Cretaceous), Alberta: a quantitative method supporting identification of the oldest dinosaur tooth assemblage in Canada. Canadian Journal of Earth Sciences, 45(12): 1455–1468.
Loewen M.A., Irmis R.B., Sertich J.J.W., Currie P.J., and Sampson S.D. 2013. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans. PLoS One, 8(11): e79420.
Longrich N.R., Horner J.R., Erickson G.M., and Currie P.J. 2010. Cannibalism in Tyrannosaurus rex. PLoS One, 5: e13419.
Marsh O.C. 1877. Notice of new dinosaurian reptiles from the Jurassic formation. American Journal of Science and Arts, 14: 514–516.
Marsh O.C. 1884. Principal characters of American Jurassic dinosaurs, part VIII: The order Theropoda. American Journal of Science, 27: 329–340.
Mclain M.A., Nelsen D., Snyder K., Griffin C.T., Siviero B., Brand L.R., and Chadwick A.V. 2018. Tyrannosaur cannibalism: a case of a tooth-traced tyrannosaurid bone in the Lance Formation (Maastrichtian), Wyoming. PALAIOS, 33: 164–173.
Meers M.B. 2002. Maximum bite force and prey size of Tyrannosaurus rex and their relationships to the inference of feeding behavior. Historical Biology, 16: 1–12.
Molnar, R.E. 1998. Mechanical factors in the design of the skull of Tyrannosaurus rex (Osborn, 1905). In GAIA: Aspects of Theropod Paleobiology, Volume 15. Edited by B.P. Pérez-Moreno, T.J. Holtz, Jr., J.L. Sanz, and J. Moratalla. Museu Nacional de História Natural, Portugal. pp. 193–218.
Molnar, R.E. 2008. Reconstruction of the jaw musculature of Tyrannosaurus rex. In Tyrannosaurus rex, The Tyrant King. Edited by P. Larson and K. Carpenter. Indiana University Press, Bloomington, Ind. pp. 255–282.
Monfroy Q.T. 2017. Correlation between the size, shape and position of the teeth on the jaws and the bite force in Theropoda. Historical Biology, 29: 1089–1105.
Osborn H.F. 1905. Tyrannosaurus and other Cretaceous carnivorous dinosaurs. Bulletin of the American Museum of Natural History, 21: 259–265.
Ouwens P.A. 1912. On a large Varanus species from the island of Komodo. Bulletin de l’Institut Botanique de Buitenzorg, 2: 1–3.
Paul, G.P. 2008. The extreme lifestyles and habits of the gigantic tyrannosaurid superpredators of the Late Cretaceous of North America and Asia. In Tyrannosaurus rex, the Tyrant King. Edited by P.L. Larson and K. Carpenter. Indiana University Press, Bloomington, Ind. pp. 306–352.
Peterson J.E. and Daus K.N. 2019. Feeding traces attributable to a juvenile Tyrannosaurus rex offer insight into ontogenetic dietary trends. PeerJ, 7: e6573.
Purwandana D., Ariefiandy A., Imansyah M.J., Seno A., Ciofi C., Letnic M., and Jessop T.S. 2016. Ecological allometries and niche use dynamics across Komodo dragon ontogeny. The Science of Nature, 103: 11.
Rayfield E.J. 2004. Cranial mechanics and feeding in Tyrannosaurus rex. Proceedings of the Royal Society B, 271: 1451–1459.
Rayfield E.J. 2005. Aspects of comparative cranial mechanics in the theropod dinosaurs Coelophysis, Allosaurus and Tyrannosaurus. Zoological Journal of the Linnean Society, 144: 309–316.
Russell D.A. 1970. Tyrannosaurs from the Late Cretaceous of western Canada. National Museum of Natural Sciences Publications in Paleontology, 1: 1–34.
Sereno P.C., Beck A.L., Dutheil D.B., Gado B., Larsson H.C.E., Lyon G.H., et al. 1998. A long-snouted predatory dinosaur from Africa and the evolution of spinosaurids. Science, 282: 1298–1302.
Snively E. and Russell A.P. 2007. Craniocervical feeding dynamics of Tyrannosaurus rex. Paleobiology, 33: 610–638.
Snively E., Henderson D.M., and Phillips D.S. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica, 51: 435–454.
Stovall J.W. and Langston W. Jr. 1950. Acrocanthosaurus atokensis, a new genus and species of Lower Cretaceous Theropoda from Oklahoma. American Midland Naturalist, 43: 696–728.
Therrien F. 2005a. Mandibular force profiles of extant carnivorans and implications for the feeding behaviour of extinct predators. Journal of Zoology, 267: 249–270.
Therrien F. 2005b. Feeding behaviour and bite force of sabertoothed predators. Zoological Journal of the Linnean Society, 145: 393–426.
Therrien, F., Henderson, D.M., and Ruff, C.B. 2005. Bite me: biomechanical models of theropod mandibles and implications for feeding behavior. In The Carnivorous Dinosaurs. Edited by K. Carpenter. Indiana University Press, Bloomington, Ind. pp. 179–237.
Therrien F., Quinney A., Tanaka K., and Zelenitsky D.K. 2016. Accuracy of mandibular force profiles for bite force estimation and feeding behavior reconstruction in extant and extinct carnivorans. The Journal of Experimental Biology, 219: 3738–3749.
Tsuihiji T., Watabe M., Tsogtbaatar K., Tsubamoto T., Barsbold R., Suzuki S., et al. 2011. Cranial osteology of a juvenile specimen of Tarbosaurus bataar (Theropoda, Tyrannosauridae) from the Nemegt Formation (Upper Cretaceous) of Bugin Tsav, Mongolia. Journal of Vertebrate Paleontology, 31: 497–517.
Varricchio D.J. 2001. Gut contents from a Cretaceous tyrannosaurid: implications for theropod dinosaur digestive tracts. Journal of Paleontology, 75: 401–406.
Voris J.T., Zelenitsky D.K., Therrien F., and Currie P.J. 2019. Reassessment of a juvenile Daspletosaurus from the Late Cretaceous of Alberta, Canada with implications for the identification of immature tyrannosaurids. Scientific Reports, 9: 17801.
Voris J.T., Therrien F., Zelenitsky D.K., and Brown C.M. 2020. A new tyrannosaurine (Theropoda:Tyrannosauridae) from the Campanian Foremost Formation of Alberta, Canada, provides insight into the evolution and biogeography of tyrannosaurids. Cretaceous Research, 110: 104388.
Vullo R., Allain R., and Cavin L. 2016. Convergent evolution of jaws between spinosaurid dinosaurs and pike conger eels. Acta Palaeontologica Polonica, 61: 825–828.
Woodward H.N., Tremaine K., Williams S.A., Zanno L.E., Horner J.R., and Myhrvold N. 2020. Growing up Tyrannosaurus rex: Osteohistology refutes the pygmy “Nanotyrannus” and supports ontogenetic niche portioning in juvenile Tyrannosaurus. Science Advances, 6: eaax6250.
Zanno L.E., Tucker R.T., Canoville A., Avrahami H.M., Gates T.A., and Makovicky P.J. 2019. Diminutive fleet-footed tyrannosauroid narrows the 70-million-year gap in the North American fossil record. Communications Biology, 2: 1e12.

Information & Authors


Published In

cover image Canadian Journal of Earth Sciences
Canadian Journal of Earth Sciences
Volume 58Number 9September 2021
Pages: 812 - 828


Received: 15 September 2020
Accepted: 12 January 2021
Accepted manuscript online: 26 January 2021
Version of record online: 26 January 2021


Request permissions for this article.

Key Words

  1. feeding behaviour
  2. paleoecology
  3. biomechanics
  4. mandibular force profile
  5. Tyrannosauridae
  6. diet


  1. mode d’alimentation
  2. paléoécologie
  3. biomécanique
  4. profil de force des mandibules
  5. tyrannosauridé
  6. régime alimentaire



François Therrien [email protected]
Royal Tyrrell Museum of Palaeontology, P.O. Box 7500, Drumheller, AB T0J 0Y0, Canada.
Darla K. Zelenitsky
Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada.
Jared T. Voris
Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada.
Kohei Tanaka
Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.


This paper is part of a series of invited papers in honour of palaeontologist Dr. Dale Alan Russell (1937–2019).
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. New Carnivoran (Mammalia: Carnivora) specimens from the Siwaliks of Pakistan and India and their faunal and evolutionary implications
2. Size-mediated competition and community structure in a Late Cretaceous herbivorous dinosaur assemblage
3. First application of dental microwear texture analysis to infer theropod feeding ecology
4. The stability of dinosaur communities before the Cretaceous–Paleogene (K–Pg) boundary: A perspective from southern Alberta using calcium isotopes as a dietary proxy
5. Generalist diet of Microraptor zhaoianus included mammals
6. “Dragons” on the landscape: Modeling the abundance of large carnivorous dinosaurs of the Upper Jurassic Morrison Formation (USA) and the Upper Cretaceous Dinosaur Park Formation (Canada)
7. Ontogenetic dietary shifts in North American hadrosaurids (Dinosauria: Ornithischia)
8. Macroevolutionary trends in theropod dinosaur feeding mechanics
9. Two exceptionally preserved juvenile specimens of Gorgosaurus libratus (Tyrannosauridae, Albertosaurinae) provide new insight into the timing of ontogenetic changes in tyrannosaurids
10. Theropod guild structure and the tyrannosaurid niche assimilation hypothesis: implications for predatory dinosaur macroecology and ontogeny in later Late Cretaceous Asiamerica1
11. Special Issue in honour of Dale Alan Russell (1937–2019)1
12. Bite force estimates in juvenile Tyrannosaurus rex based on simulated puncture marks

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Canadian Journal of Earth Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media