Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

40Ar/39Ar dating of Paleoproterozoic shear zones in the Ellesmere–Devon crystalline terrane, Nunavut, Canadian Arctic

Publication: Canadian Journal of Earth Sciences
9 April 2021

Abstract

Paleoproterozoic gneisses of the Ellesmere–Devon crystalline terrane on southeastern Ellesmere Island are deformed by metre-scale, east-striking mylonite zones. The shear zones commonly offset pegmatitic dikes and represent the last episode of ductile deformation. Samples were dated by the 40Ar/39Ar step-heating method to put an upper limit on the time of deformation. Biotite from one tonalitic protolith and five shear zones give geologically meaningful results. Clusters of unoriented biotite grains pseudomorph granulite-facies orthopyroxene in some of the weakly deformed gneisses, whereas the shape-preferred orientation of biotite defines the mylonitic fabric. The intrusive age of the tonalitic protolith is 1958 ± 12 Ma, based on previous U–Pb dating of zircon. 40Ar/39Ar analysis of biotite from the same sample gave a plateau age of 1929 ± 23 Ma, which is interpreted as cooling from regional granulite facies metamorphism. Three nearby samples of mylonitic tonalite have 40Ar/39Ar ages in the range of ≈1870–1840 Ma. Biotite from two granitic mylonites over 80 km away return high-resolution Ar spectra in the same range, implying that widespread ductile shearing occurred at ≈1870–1840 Ma, or ≈90 million years after cooling from regional metamorphism. Although the 2.0–1.9 Ga gneisses of southeastern Ellesmere Island correlate with the Inglefield Mobile Belt in North-West Greenland and the Thelon Tectonic Zone, the late shear zones are superimposed on that juvenile arc long after the 1.97 Ga Thelon orogeny.

Résumé

Des gneiss paléoprotérozoïques du terrane cristallin d’Ellesmere–Devon dans le sud-est de l’île d’Ellesmere sont déformés par des zones métriques de mylonites de direction Est. Dans bien des cas, ces zones de cisaillement ont entraîné le décalage de dykes de pegmatite et représentent le dernier épisode de déformation ductile. Des échantillons ont été datés au 40Ar/39Ar par la méthode de chauffe par paliers afin d’établir une limite d’âge supérieure pour la déformation. Des biotites provenant d’un protolite tonalitique et de cinq zones de cisaillement donnent des résultats cohérents du point de vue géologique. Des amas de grains de biotite sans orientation privilégiée représentent des pseudomorphes d’orthopyroxène du faciès des granulites dans certains des gneiss faiblement déformés, alors que l’orientation privilégiée d’autres grains de biotite définit la fabrique mylonitique. L’âge d’intrusion du protolite tonalitique est de 1958 ± 12 Ma, à la lumière de résultats passés de datation U–Pb sur zircons. L’analyse 40Ar/39Ar de biotite du même échantillon produit un âge de plateau de 1929 ± 23 Ma, qui est interprété comme étant l’âge du refroidissement ayant suivi le métamorphisme régional au faciès des granulites. Trois échantillons de tonalite mylonitique prélevés à proximité ont donné des âges 40Ar/39Ar dans l’intervalle de ≈1870–1840 Ma. De la biotite de deux mylonites granitiques situées à plus de 80 km donne des spectres de Ar de haute résolution dans la même fourchette d’âges, ce qui sous-entend qu’un cisaillement ductile répandu a eu lieu dans l’intervalle de ≈1870–1840 Ma, ou ≈90 millions d’années après le refroidissement qui a suivi le métamorphisme régional. Bien que les gneiss de 2,0–1,9 Ga du sud-est de l’île d’Ellesmere soient corrélés à la ceinture mobile d’Inglefield du Groenland du Nord-Ouest et à la zone tectonique de Thelon, les zones de cisaillement tardives ont été superposées sur cet arc juvénile bien après l’orogenèse de Thelon à 1,97 Ga. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Beranek L.P., Pease V., Scott R.A., and Thomsen T.B. 2013. Detrital zircon geochronology of Ediacaran to Cambrian deep-water strata of the Franklinian basin, northern Ellesmere Island, Nunavut: implications for regional stratigraphic correlations. Canadian Journal of Earth Sciences, 50(10): 1007–1018.
Card C.D., Bethune K.M., Davis W.J., Rayner N., A., and K.E. 2014. The case for a distinct Taltson orogeny: Evidence from northwest Saskatchewan. Precambrian Research, 255: 245–265.
Costa S. and Maluski H. 1988. Use of the 40Ar-39Ar Stepwise heating method for dating mylonite zones: An example from the St. Barthélémy Massif (Northern Pyrenees, France). Chemical Geology, 72: 127–144.
Dawes, P.R. 1991. Geological map of Greenland 1:500,000, Thule, Sheet 5: Geological Survey of. Denmark and Greenland. Copenhagen, Denmark.
Dawes, P.R., and Gaarde, A.A. 2004. Geological map of Greenland 1:500,000, Humbolt Gletscher, sheet 6. In Geological survey of Denmark and Greenland, Copenhagen, Denmark.
Di Vincenzo G., Viti C., and Rocchi S. 2003. The effect of chlorite interlayering on 40Ar–39Ar biotite dating: an 40Ar–39Ar laser-probe and TEM investigations of variably chloritised biotites. Contributions to Mineralogy and Petrology, 145: 643–658.
Dunlap W.J., Teyssier C., McDougall I., and Baldwin S. 1991. Age of deformation of K/Ar and 40Ar/39Ar dating of white micas. Geology, 19: 1213–1216.
Dunlap W.J. 1997. Neocrystallization or cooling? 40Ar/39Ar ages of white micas from low-grade mylonites. Chemical Geology, 143: 181–203.
Frisch, T. 1984. Geology, Prince of Wales Mountains, District of Franklin, Northwest Territories. Geological Survey of Canada. Map 1572a, 1: 250–000.
Frisch, T. 1988. Reconnaissance geology of the Precambrian shield of Ellesmere, Devon and Coburg Islands, Canadian Arctic Archipelago. Geological Survey of Canada Memoir 409. 104pp.
Frisch, T., and Hunt, P.A. 1988. U–Pb zircon and monazite ages from the Precambrian shield of Ellesmere and Devon Islands, Arctic Archipelago. In Radiogenic age and isotopic studies. Report 2, Geological Survey of Canada Paper 88-2. pp. 117–125.
Gilotti, J.A. 1992. The rheologically critical matrix in arkosic mylonites along the Särv thrust, Swedish Caledonides. In Structural geology of fold and thrust belts. Edited by S. Mitra and G. Fisher. Johns Hopkins University Press, Baltimore, Md. pp. 145–160.
Gilotti J.A., McClelland W.C., Piepjohn K., and von Gosen W. 2018. U–Pb geochronology of Paleoproterozoic gneiss from southeastern Ellesmere Island: Implications for displacement estimates on the Wegener Fault. Arktos, 4: 1–18.
Goodwin L.B. and Renne P.R. 1991. Effects of progressive mylonitization on Ar retention in biotites from the Santa Rosa mylonite zone, California, and thermochronologic implications. Contributions to Mineralogy and Petrology, 108: 283–297.
Grove, M., 1993. Thermal histories of southern California basement terranes. Ph.D. dissertation, University of California, Los Angeles, California.
Grove M. and Harrison T.M. 1996. 40Ar* diffusion in Fe-rich biotite. American Mineralogist, 81: 940–951.
Harrison, J.C., Thorsteinsson, R., and de Freitas, T.A. 2009. Phanerozoic bedrock geology, Strathcona Fiord area, Ellesmere Island, Nunavut. Geological Survey of Canada, Map 2141A, 1: 25–000.
Hoffman P.F. 1987. Continental transform tectonics: Great Slave Lake shear zone (ca. 1.9 Ga), northwest Canada. Geology, 15: 785–788.
Hoffman P.F. 1988. The United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia. Annual Reviews of Earth and Planetary Sciences, 16: 543–603.
Hoffman, P.F. 1989. Precambrian geology and tectonic history of North America. In The geology of North America—an overview. Edited by A.W. Bally and A.R. Palmer. Geological Society of America, Boulder, Colo., The Geology of North America v. A. pp. 447–512.
Jicha B.R. and Brown F.H. 2014. An age for the Korath Range, Ethiopia and the viability of 40Ar/39Ar dating of kaersutite in Late Pleistocene volcanics. Quaternary Geology, 21: 53–57.s.
Kellett D.A., Pehrsson S., Skipton D.R., Regis D., Camacho A., Schneider D.A., and Berman R. 2020. Thermochronological history of the Northern Canadian Shield. Precambrian Research, 342: 105703
Kirschner D.L., Cosca M.A., Masson H., and Hunziker J.C. 1996. Staircase 40Ar/39Ar spectra of fine-grained white mica: Timing and duration of deformation and empirical constraints on argon diffusion. Geology, 24: 747–750.
Klepeis K.A., Webb L.E., Blatchford H.J., Jongens R., Turnbull R.E., and Schwartz J.J. 2019. The age and origin of Miocene-Pliocene fault reactivations in the upper plate of an incipient subduction zone, Puysegur Margin, New Zealand. Tectonics, 38: 3237–3260.
Kuiper K.F., Deino A., Hilgen F.J., Krijgsman W., Renne P.R., and Wijbrans A.J. 2008. Synchronizing rock clocks of Earth history. Science, 320(5875): 500–504.
Lee J.Y., Marti K., Severinghaus J.P., Kawamura K., Yoo H.S., Lee J.B., and Kim J.S. 2006. A redetermination of the isotopic abundances of atmospheric Ar. Geochimica, et Cosmochimica Acta, 70: 4507–4512.
Lo C.-H. and Onstott T.C. 1989. 39Ar recoil artifacts in chloritized biotite. Geochimica et Cosmochimica Acta, 53: 2697–2711.
Ludwig, K.R. 2003. User’s manual for Isoplot 3.00, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, USA. 72pp.
Ma S.M., Kellett D.A., Godin L., and Jercinovic M.J. 2020. Localisation of the brittle Bathurst fault on pre-existing fabrics: a case for structural inheritance in the northeastern Slave craton, western Nunavut, Canada. Canadian Journal of Earth Sciences, 57(6): 725–746.
McDonough M.R., McNicoll V.J., Schetselaar E.M., and Grover T.M. 2000. Geochronological and kinematic constraints on crustal shortening and escape in a two-sided, oblique-slip collisional and magmatic orogeny, Paleoproterozoic Taltson magmatic zone, northeastern Alberta. Canadian Journal of Earth Sciences, 37(11): 1549–1573.
McDougall, I., and Harrison, T.M. 1999. Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, U.K.
Min K., Mundil R., Renne P.R., and Ludwig K.R. 2000. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1 Ga rhyolite. Geochimica, et Cosmochimica Acta, 64: 73–98.
Mulch A. and Cosca M.A. 2004. Recrystallization or cooling ages: in situ UV-laser 40Ar/39Ar geochronology of muscovite in mylonitic rocks. Journal of the Geological Society, London, 161: 573–582.
Mulch A., Cosca M., and Handy M. 2002. In-situ UV-laser 40Ar/39Ar geochronology of a micaceous mylonite: an example of defect-enhanced argon loss. Contributions to Mineralogy and Petrology, 142: 738–752.
Nutman A.P., Dawes P.R., Kalsbeek F., and Hamilton M.A. 2008. Palaeoproterozoic and Archaean gneiss complexes in northern Greenland: Palaeoproterozoic terrane assembly in the High Arctic. Precambrian Research, 161: 419–451.
Pehrsson S.J., Berman R.G., and Davis W.J. 2013. Palaeoproterozoic orogenesis during Nuna aggregation: A case study of reworking of the Rae craton, Woodburn Lake, Nunavut. Precambrian Research, 232: 167–188.
Renne P.R., Deino A.L., Hilgen F.J., Kuiper K.F., Mark D.F., Mitchell I.I.I., et al. 2013. Time scales of critical events around the Cretaceous-Paleogene boundary. Science, 339: 684–687.
Schaen A.J. IV., Jicha B.R., Hodges K.V., Vermeesch P., Stelten M.E., Mercer C.M., et al. 2021. Interpreting and reporting 40Ar/39Ar geochronologic data. Geological Society of America Bulletin, 133: 461–487.
Schertl H.-P. and Hammerschmidt K. 2016. Tracking the incidence of excess argon in white mica Ar–Ar data from UHP conditions to upper crustal levels in the Dora-Maira Massif, Western Alps. European Journal of Mineralogy, 28: 1255–1275.
Stipp M., Stünitz H., Heilbronner R., and Schmid S. 2002. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. Journal of Structural Geology, 24: 1861–1884.
Stoenner R.W., Schaeffer O.A., and Katcoff S. 1965. Half-lives of argon-37, argon-39, and argon-42. Science, 148(3675): 1325–1328.
St-Onge M.R., Van Gool J.A.M., Garde A.A., and Scott D.J. 2009. Correlation of Archaean and Palaeoproterozoic units between northeastern Canada and western Greenland: constraining the pre-collisional upper plate accretionary history of the Trans-Hudson orogeny. Geological Society, London, Special Publications, 318: 193–235.
Tirrul, R., and Grotzinger, J.P. 1990. Early Proterozoic collisional orogeny along the northern Thelon tectonic zone, Northwest Territories, Canada: Evidence from the foreland. Tectonics, 9: 1015–1036.
von Gosen, W., Piepjohn, K., Gilotti, J.A., McClelland, W.C., and Reinhardt, L. 2019. Structural evidence for sinistral displacement on the Wegener Fault in southern Nares Strait, Arctic Canada. In Circum-Arctic Structural Events: Tectonic evolution of the Arctic margins and trans-Arctic links with adjacent orogens. Edited by K. Piepjohn, J. Strauss, L. Reinhardt, and W.C. McClelland. Geological Society of America Special Paper 541. pp. 367–396.
Webb L.E., Johnson C.L., and Minjin C. 2010. Late Triassic sinistral shear in the East Gobi Fault Zone, Mongolia. Tectonophysics, 459: 246–255.
Whalen, J.B., Berman, R.G., Davis, W.J., Sanborn-Barrie, M., and Nadeau, L. 2018. Bedrock geochemistry of the central Thelon Tectonic Zone, Nunavut. Geological Survey of Canada. Open File, 823449p,.
Whitmeyer S.J. and Karlstrom K.E. 2007. Tectonic model for the Proterozoic growth of North America. Geosphere, 3: 220–259.

Supplementary Material

Supplementary data (cjes-2020-0197suppla.pdf)
Supplementary data (cjes-2020-0197supplb.pdf)
Supplementary data (cjes-2020-0197supplc.xlsx)
Supplementary data (cjes-2020-0197suppld.pdf)

Information & Authors

Information

Published In

cover image Canadian Journal of Earth Sciences
Canadian Journal of Earth Sciences
Volume 58Number 10October 2021
Pages: 1073 - 1084

History

Received: 29 October 2020
Accepted: 15 February 2021
Accepted manuscript online: 9 April 2021
Version of record online: 9 April 2021

Permissions

Request permissions for this article.

Key Words

  1. 40Ar/39Ar dating
  2. biotite
  3. Ellesmere Island
  4. mylonite
  5. shear zone

Mots-clés

  1. datation 40Ar/39Ar
  2. biotite
  3. île d’Ellesmere
  4. mylonite
  5. zone de cisaillement

Authors

Affiliations

Brandon Caswell
Department of Earth and Environmental Sciences, University of Iowa City, IA 52240, USA.
Jane A. Gilotti [email protected]
Department of Earth and Environmental Sciences, University of Iowa City, IA 52240, USA.
Laura E. Webb
Department of Geology, University of Vermont, Burlington, VT 05405, USA.
William C. McClelland
Department of Earth and Environmental Sciences, University of Iowa City, IA 52240, USA.
Karolina Kośmińska
Department of Earth and Environmental Sciences, University of Iowa City, IA 52240, USA.
Faculty of Geology, Geophysics and Environmental Protection, AGH – University of Science and Technology, Kraków 30-059, Poland.
Karsten Piepjohn
Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany.
Werner von Gosen
Geozentrum Nordbayern, Krustendynamik, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany.

Notes

© 2021 The Author(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. The first application of Re–Os dating on Paleoproterozoic Francevillian sediments (Gabon)
2. Late Neoarchean terrane and Paleoproterozoic HT–UHT metamorphism on southern Devon Island, Canadian Arctic

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Earth Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media