research-article

A simple length-structured model based on life history ratios and incorporating size-dependent selectivity: application to spawning potential ratios for data-poor stocks

Publication: Canadian Journal of Fisheries and Aquatic Sciences11 May 2016https://doi.org/10.1139/cjfas-2015-0422

Abstract

Selectivity in fish is often size-dependent, which results in differential fishing mortality rates across fish of the same age, an effect known as “Lee’s Phenomenon”. We extend previous work on using length composition to estimate the spawning potential ratio (SPR) for data-limited stocks by developing a computationally efficient length-structured per-recruit model that splits the population into a number of subcohorts, or growth-type-groups, to account for size-dependent fishing mortality rates. Two simple recursive equations, using the life history ratio of the natural mortality rate to the von Bertalanffy growth parameter (M/K), were developed to generate length composition data, reducing the complexity of the previous approach. Using simulated and empirical data, we demonstrate that ignoring Lee’s Phenomenon results in overestimates of fishing mortality and negatively biased estimates of SPR. We also explored the behaviour of the model under various scenarios, including alternative life history strategies and the presence of size-dependent natural mortality. The model developed in this paper may be a useful tool to estimate the SPR for data-limited stock where it is not possible to apply more conventional methods.

Résumé

La sélectivité des poissons dépend souvent de la taille, ce qui se traduit par différents taux de mortalité par pêche pour des poissons du même âge, un effet appelé « phénomène de Lee ». Nous élargissons des travaux antérieurs sur l’utilisation de la distribution des longueurs pour estimer le rapport du potentiel de reproduction (RPR) de stocks pour lesquels les données sont limitées, en développant un modèle par recrue structuré par la longueur efficace sur le plan informatique qui divise la population en un certain nombre de sous-cohortes, ou groupes de type de croissance, pour tenir compte des taux de mortalité par pêche dépendant de la taille. Deux équations récursives simples, qui utilisent le rapport associé au cycle biologique du taux de mortalité naturelle et du paramètre de croissance de von Bertalanffy (M/K), ont été établies pour générer des données de distribution des longueurs, réduisant du coup la complexité de l’approche antérieure. En utilisant des données simulées et empiriques, nous démontrons que le fait de ne pas tenir compte du phénomène de Lee entraîne une surestimation de la mortalité par pêche et des estimations du RPR caractérisées par des erreurs systématiques négatives. Nous avons également exploré le comportement du modèle pour différents scénarios, dont différentes stratégies de cycle biologiques et la présence d’une mortalité naturelle dépendant de la taille. Le modèle pourrait constituer un outil utile pour estimer le rapport du RPR pour des stocks pour lesquels les données sont limitées auxquels l’application de méthodes plus traditionnelles n’est pas possible. [Traduit par la Rédaction]

References

Andersen K.H. and Beyer J.E. 2015. Size structure, not metabolic scaling rules, determines fisheries reference points. Fish Fish. 16(1): 1–22.
Andrew N.L., Béné C., Hall S.J., Allison E.H., Heck S., and Ratner B.D. 2007. Diagnosis and management of small-scale fisheries in developing countries. Fish Fish. 8: 227–240.
Béné C. 2003. When fishery rhymes with poverty: a first step beyond the old paradigm on poverty in small-scale fisheries. World Dev. 31: 949–975.
Bentley N. 2015. Data and time poverty in fisheries estimation: potential approaches and solutions. ICES J. Mar. Sci. 72: 186–193.
Beverton R.J.H. 1992. Patterns of reproductive strategy parameters in some marine teleost fishes. J. Fish Biol. 41: 137–160.
Botsford L.W. 1981a. Optimal fishery policy for size-specific, density-dependent population models. J. Math. Biol. 12: 265–293.
Botsford L.W. 1981b. The effects of increased individual growth rates on depressed population size. Am. Nat. 117: 38–63.
Botsford, L.W., and Wickham, D.E. 1979. Population cycles caused by inter-age, density-dependent mortality in young fish and crustaceans. Cyclic phenomena in marine plants and animals. In ‘Proceedings of the 13th European Marine Biology Symposium’, 27 September – 4 October 1978, Isle of Man, UK. Edited by E. Naylor and R.G. Hartnoll. Permagon, New York. pp. 73–82.
Bull, B., Francis, R.I.C.C., Dunn, A., McKenzie, A., Gilbert, D.J., Smith, M.H., Bian, R., and Fu, D. 2012. CASAL (C++ algorithmic stock assessment laboratory): CASAL User Manual v2.30-2012/03/21. NIWA Technical Report 135.
Charnov E.L. 2014. Gompertz mortality, natural selection, and the “shape of ageing”. Evol. Ecol. Res. 16: 435–439.
Charnov E.L., Gislason H., and Pope J.G. 2013. Evolutionary assembly rules for fish life histories. Fish Fish. 14: 213–224.
Costello C., Ovando D., Hilborn R., Gaines S.D., Deschenes O., and Lester S.E. 2012. Status and solutions for the world’s unassessed fisheries. Science, 338: 517–520.
Dowling N.A., Dichmont C.M., Haddon M., Smith D.C., Smith A.D.M., and Sainsbury K. 2015. Empirical harvest strategies for data-poor fisheries: a review of the literature. Fish. Res. 171: 141–153.
Erzini K. 1990. Sample size and grouping of data for length–frequency analysis. Fish. Res. 9: 355–366.
Eveson J.P., Polacheck T., and Laslett G.M. 2007. Consequences of assuming an incorrect error structure in von Bertalanffy growth models: a simulation study. Can. J. Fish. Aquat. Sci. 64(4): 602–617.
Francis R.I.C.C. 2016. Growth in age-structured stock assessment models. Fish. Res. 180: 77–86.
Gerritsen H.D. and McGrath D. 2006. Precision estimates and suggested sample sizes for length–frequency data. Fish. Bull. 106: 116–120.
Goodyear C.P. 1995. Mean size at age: an evaluation of sampling strategies with simulated red grouper data. Trans. Am. Fish. Soc. 124: 746–755.
Hampton J. 2000. Natural mortality rates in tropical tunas: size really does matter. Can. J. Fish. Aquat. Sci. 57(5): 1002–1010.
Heery E.C. and Berkson J. 2009. Systematic errors in length frequency data and their effect on age-structured stock assessment models and management. Trans. Am. Fish. Soc. 138: 218–232.
Hilborn R. 2007. Moving to sustainability by learning from successful fisheries. Ambio, 36: 296–303.
Hilborn R. and Ovando D. 2014. Reflections on the success of traditional fisheries management. ICES J. Mar. Sci. 71: 1040–1046.
Hilborn, R., and Walters, C.J. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman and Hall, New York.
Honey, K., Moxley, J., and Fujita, R. 2010. From rags to fishes: data-poor methods for fishery managers. In Managing Data-Poor Fisheries Workshop: Case Studies, Models and Solutions. California Sea Grant College Program. pp. 159–184.
Hordyk A.R., Ono K., Sainsbury K.J., Loneragan N., and Prince J.D. 2015a. Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio. ICES J. Mar. Sci. 72: 204–216.
Hordyk A.R., Ono K., Valencia S.R., Loneragan N.R., and Prince J.D. 2015b. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES J. Mar. Sci. 72: 217–231.
Hordyk A.R., Loneragan N.R., and Prince J.D. 2015c. An evaluation of an iterative harvest strategy for data-poor fisheries using the length-based spawning potential ratio assessment methodology. Fish. Res. 171: 20–32.
Kelly C.J. and Codling E.A. 2006. “Cheap and dirty” fisheries science and management in the North Atlantic. Fish. Res. 79: 233–238.
Kenchington T.J. 2014. Natural mortality estimators for information-limited fisheries. Fish Fish. 15: 533–562.
Kent G. 1997. Fisheries, food security, and the poor. Food Pol. 22: 393–404.
Lee R.M. 1912. An investigation into the methods of growth determination in fishes by means of scales. J. Cons. Int. Explor. Mer, s1: 3–34.
Lorenzen K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J. Fish Biol. 49: 627–647.
Lorenzen K. 2000. Allometry of natural mortality as a basis for assessing optimal release size in fish-stocking programmes. Can. J. Fish. Aquat. Sci. 57(12): 2374–2381.
Magnusson A., Punt A.E., and Hilborn R. 2013. Measuring uncertainty in fisheries stock assessment: the delta method, bootstrap, and MCMC. Fish Fish. 14: 325–342.
Mangel M., Kindsvater H.K., and Bonsall M.B. 2007. Evolutionary analysis of life span, competition, and adaptive radiation, motivated by the Pacific rockfishes (Sebastes). Evolution, 61: 1208–1224.
Maunder M.N. and Punt A.E. 2013. A review of integrated analysis in fisheries stock assessment. Fish. Res. 142: 61–74.
McGarvey R., Feenstra J.E., and Ye Q. 2007. Modeling fish numbers dynamically by age and length: partitioning cohorts into “slices.” Can. J. Fish. Aquat. Sci. 64(9): 1157–1173.
Methot R.D. and Wetzel C. 2013. Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fish. Res. 142: 86–99.
Pennings S.C. 1990. Predator–prey interactions in opisthobranch gastropods: effects of prey body size and habitat complexity. Mar. Ecol. Prog. Ser. 62: 95–101.
Pilling G.M., Kirkwood G.P., and Walker S.G. 2002. An improved method for estimating individual growth variability in fish, and the correlation between von Bertalanffy growth parameters. Can. J. Fish. Aquat. Sci. 59(3): 424–432.
Pitcher T.J. and Cheung W.W.L. 2013. Fisheries: hope or despair? Mar. Pollut. Bull. 74: 506–516.
Prince J.D., Hordyk A.R., Valencia S.R., Loneragan N.R., and Sainsbury K.J. 2015a. Revisiting the concept of Beverton–Holt life-history invariants with the aim of informing data-poor fisheries assessment. ICES J. Mar. Sci. 72: 194–203.
Prince J.D., Victor S., Kloulchad V., and Hordyk A.R. 2015b. Length based SPR assessment of eleven Indo-Pacific coral reef fish populations in Palau. Fish. Res. 171: 42–58.
Punt A.E. and Hilborn R. 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish Biol. Fish. 7: 35–63.
Punt A.E., Smith A.D.M., and Cui G. 2002. Evaluation of management tools for Australia’s South East Fishery 1. Modelling the South East Fishery taking account of technical interactions. Mar. Freshw. Res. 53: 615–629.
Punt A.E., Huang T., and Maunder M.N. 2013. Review of integrated size-structured models for stock assessment of hard-to-age crustacean and mollusc species. ICES J. Mar. Sci. 70: 16–33.
Quinn, T.J., and Deriso, R.B. 1999. Quantitative fish dynamics. Oxford University Press, New York.
R Core Team. 2015. R: a language and environment for statistical computing [online]. R Foundation for Statistical Computing, Vienna, Austria. Available from www.R-project.org.
Sainsbury K.J. 1980. Effect of individual variability on the von Bertalanffy growth equation. Can. J. Fish. Aquat. Sci. 37(2): 241–247.
Scheffer M., Baveco J.M., DeAngelis D.L., Rose K.A., and van Nes E.H. 1995. Super-individuals a simple solution for modeling large populations on an individual basis. Ecol. Modell. 80: 161–170.
Shelton A.O., Satterthwaite W.H., Beakes M.P., Munch S.B., Sogard S.M., and Mangel M. 2013. Separating intrinsic and environmental contributions to growth and their population consequences. Am. Nat. 181: 799–814.
Sullivan P.J., Lai H.-L., and Gallucci V.F. 1990. A catch-at-length analysis that incorporates a stochastic model of growth. Can. J. Fish. Aquat. Sci. 47(1): 184–198.
Taylor I.G. and Methot R.D. 2013. Hiding or dead? A computationally efficient model of selective fisheries mortality. Fish. Res. 142: 75–85.
Vaughan D.S. and Burton M.L. 1994. Estimation of von Bertalanffy growth parameters in the presence of size-selective mortality: a simulated example with red grouper. Trans. Am. Fish. Soc. 123: 1–8.
Walmsley S., Purvis J., and Ninnes C. 2006. The role of small-scale fisheries management in the poverty reduction strategies in the Western Indian Ocean region. Ocean Coast. Manage. 49: 812–833.
Walters, C.J., and Martell, S.J.D. 2004. Fisheries ecology and management. Princeton University Press, Princeton, USA.
Wang Y.-G. and Ellis N. 1998. Effect of individual variability on estimation of population parameters from length–frequency data. Can. J. Fish. Aquat. Sci. 55(11): 2393–2401.
Worm B. and Branch T.A. 2012. The future of fish. Trends Ecol. Evol. 27: 594–599.
Wang Y.-G. and Thomas M. 1995. Accounting for individual variability in the von Bertalanffy growth model. Can. J. Fish. Aquat. Sci. 52(7): 1368–1375.
Wang Y.-G., Thomas M.R., and Somers I.F. 1995. A maximum likelihood approach for estimating growth from tag–recapture data. Can. J. Fish. Aquat. Sci. 52(2): 252–259.

Information & Authors

Information

Published In

Canadian Journal of Fisheries and Aquatic Sciences cover image
Canadian Journal of Fisheries and Aquatic Sciences
Volume 73Number 122016
Pages: 1787 - 1799

History

Received: 2 September 2015
Accepted: 12 April 2016
Published online: 11 May 2016

Permissions

Request permissions for this article.

Authors

Affiliations

Adrian R. Hordyk a.hordyk@murdoch.edu.au
Centre for Fish and Fisheries Research, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
Kotaro Ono
School of Aquatic and Fishery Sciences Box 355020, University of Washington, Seattle, WA 98195-5020, USA.
Jeremy D. Prince
Centre for Fish and Fisheries Research, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
Biospherics Pty Ltd., P.O. Box 168, South Fremantle, WA 6162, Australia.
Carl J. Walters
Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Metrics & Citations

Metrics

Citations

View Options

Media

Figures

Other

Tables

Share

Information & Authors
Metrics & Citations
Other Metrics
 
Cite As


 
Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.


 
Cited by
1. Are South African linefishes recovering and what makes them prone to overexploitation?
2. Dome-shaped selectivity in LB-SPR: Length-Based assessment of data-limited inland fish stocks sampled with gillnets
3. Length-frequency data approaches to evaluate snapper and grouper fisheries in the Java Sea, Indonesia
4. Evaluating data-limited fisheries for grouper (Serranidae) and snapper (Lutjanidae) in the Coral Triangle, eastern Indonesia
5. Identifying spawner biomass per-recruit reference points from life-history parameters
6. Spiny lobster fisheries status across time and a mosaic of spatial management regimes
7. Selecting optimal bin size to account for growth variability in Electronic LEngth Frequency ANalysis (ELEFAN)
8. Length based assessment of spawning potential ratio in data-poor fisheries for blue swimming crab (Portunus spp.) in Sri Lanka and Indonesia: Implications for sustainable management
9. JABBA-Select: Incorporating life history and fisheries’ selectivity into surplus production models
10. Reference points for the length-based indicator Lmax5% for use in the assessment of data-limited stocks
11. Fish-length based indicators for improved management of the sardinella fisheries in Senegal
12. Evaluating the Performances of Size‐Frequency‐Based Methods for Estimating Fishing Mortality of Pholis fangi
13. Global reconstruction of life‐history strategies: A case study using tunas
14. Comment on “A new approach for estimating stock status from length frequency data” by Froese et al. (2018)
15. On the pile-up effect and priors for Linf and M / K : response to a comment by Hordyk et al. on “A new approach for estimating stock status from length frequency data”
16. Coping with information gaps in stock productivity for rebuilding and achieving maximum sustainable yield for grouper–snapper fisheries
17. What to do when you have almost nothing: A simple quantitative prescription for managing extremely data‐poor fisheries
18. Ensemble models for data-poor assessment: accounting for uncertainty in life-history information
20. Length-based risk analysis for assessing sustainability of data-limited tropical reef fisheries
21. An indicator‐based decision framework for the northern California red abalone fishery
22. Fish community and single-species indicators provide evidence of unsustainable practices in a multi-gear reef fishery
23. A new approach for estimating stock status from length frequency data
24. Assessing the sensitivity of data-limited methods (DLMs) to the estimation of life-history parameters from length–frequency data
25. The influence of sample distribution on growth model output for a highly-exploited marine fish, the Gulf Corvina ( Cynoscion othonopterus )
26. A 25-year marine reserve as proxy for the unfished condition of an exploited species
Share Options
Share the article link
Share on social media
Get Access
Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe to csp

Click on the button below to subscribe now

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View Options
Tables
References