A spatial–temporal approach to modeling somatic growth across inland recreational fisheries landscapes

Publication: Canadian Journal of Fisheries and Aquatic Sciences
19 August 2020

Abstract

We develop a mechanistically motivated von Bertalanffy growth model to estimate growth rate and its predictors from spatial–temporal data and compare this model’s performance with a suite of commonly used mixed-effects growth models. We test these models with simulated data and then apply them to test whether concerns that high density is causing growth suppression of walleye (Sander vitreus) in Alberta, Canada, are supported using data collected during 2000–2017. Simulation experiments demonstrated that models that failed to account for complex dependency structures often resulted in growth rate estimates that were less accurate and biased low as judged by median absolute relative error and median relative error, respectively. The magnitude of this bias depended on the parameter values used for simulation. For the case study, a spatial–temporal model was more parsimonious and had higher predictive performance relative to simpler models and did not support the slow-growing walleye hypothesis in Alberta. These findings demonstrate the importance of considering spatial–temporal correlation in analyses that rely on surveillance-style monitoring datasets, particularly when examining relationships between life-history traits and environmental characteristics.

Résumé

Nous développons un modèle de croissance de von Bertalanffy à relations mécanistes pour estimer le taux de croissance et ses variables prédictives à partir de données spatiotemporelles et comparons la performance de ce modèle à une série de modèles de croissance à effets mixtes couramment utilisés. Nous mettons ces modèles à l’essai en utilisant des données simulées et les appliquons ensuite pour vérifier si des données recueillies de 2000 à 2017 appuient l’interprétation proposée qu’une forte densité causerait une suppression de la croissance de dorés jaunes (Sander vitreus) en Alberta (Canada). Des expériences de simulation démontrent que les modèles qui ne tiennent pas compte de structures de dépendance complexes produisent souvent des estimations des taux de croissance moins exactes et biaisées vers le bas, comme indiqué par l’erreur relative médiane absolue et l’erreur relative médiane, respectivement. La magnitude de ce biais dépend des valeurs des paramètres utilisées pour la simulation. Pour l’étude de cas, un modèle spatiotemporel s’avère plus parcimonieux et présente une meilleure performance prédictive que les modèles plus simples et n’appuie pas l’hypothèse des dorés à croissance lente en Alberta. Ces résultats démontrent l’importance de tenir compte des corrélations spatiotemporelles dans les analyses qui reposent sur des ensembles de données de type surveillance, en particulier pour l’examen des relations entre des caractères du cycle biologique et des caractéristiques du milieu ambiant. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Anderson S.C. and Ward E.J. 2019. Black swans in space: modeling spatiotemporal processes with extremes. Ecology, 100(1): e02403.
Arlinghaus R., Alós J., Beardmore B., Daedlow K., Dorow M., Fujitani M., et al. 2017. Understanding and managing freshwater recreational fisheries as complex adaptive social–ecological systems. Rev. Fish. Sci. Aquacult. 25(1): 1–41.
Beardmore B., Hunt L.M., Haider W., Dorow M., and Arlinghaus R. 2014. Effectively managing angler satisfaction in recreational fisheries requires understanding the fish species and the anglers. Can. J. Fish. Aquat. Sci. 72(4): 500–513.
Bell A., Jones K., and Fairbrother M. 2018. Understanding and misunderstanding group mean centering: a commentary on Kelley et al.’s dangerous practice. Qual. Quant. 52(5): 2031–2036.
Beverton, R., and Holt, S. 1957. On the dynamics of exploited fish populations. Chapman and Hall.
Blangiardo, M., and Cameletti, M. 2015. Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley and Sons.
Bozek, M.A., Baccante, D.A., and Lester, N.P. 2011. Walleye and sauger life history. In Biology, management, and culture of Walleye and Sauger. Vol. 233. Edited by B.A. Barton. American Fisheries Society. 301.
Brännström Å. and Sumpter D.J. 2005. The role of competition and clustering in population dynamics. Proc. R. Soc. B Biol. Sci. 272(1576): 2065–2072.
Cain R.L., Snow N.P., Crawford J.C., Williams D.M., and Porter W.F. 2019. Spatial distribution and landscape associations of large-antlered deer. J. Wild. Manage. 83(8): 1762–1772.
Cameletti M., Ignaccolo R., and Bande S. 2011. Comparing spatio-temporal models for particulate matter in Piemonte. Environmetrics, 22(8): 985–996.
Carruthers T.R., Dabrowska K., Haider W., Parkinson E.A., Varkey D.A., Ward H., et al. 2019. Landscape-scale social and ecological outcomes of dynamic angler and fish behaviours: processes, data, and patterns. Can. J. Fish. Aquat. Sci. 76(6): 970–988.
Charnov E.L. 2010. Comparing body-size growth curves: the Gallucci–Quinn index, and beyond. Environ. Biol. Fishes, 88(3): 293–294.
Cressie, N., and Wikle, C.K. 2015. Statistics for spatio-temporal data. John Wiley and Sons.
Embke H.S., Rypel A.L., Carpenter S.R., Sass G.G., Ogle D., Cichosz T., et al. 2019. Production dynamics reveal hidden overharvest of inland recreational fisheries. Proc. Natl. Acad. Sci. 116(49): 24676–24681.
Funge-Smith, S. 2018. Review of the state of the world fishery resources: Inland fisheries. FAO Fisheries and Aquaculture Circular (C942).
Gallucci V.F. and Quinn T.J. 1979. Reparameterizing, fitting, and testing a simple growth model. Trans. Am. Fish. Soc. 108(1): 14–25.
Gelman A. 2008. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27(15): 2865–2873.
Gelman, A., and Hill, J. 2007. Data analysis using regression and multi-level hierarchical models. Cambridge University Press, New York, USA.
Gelman A., Hwang J., and Vehtari A. 2014. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24(6): 997–1016.
Grüss A., Walter J.F. III, Babcock E.A., Forrestal F.C., Thorson J.T., Lauretta M.V., and Schirripa M.J. 2019. Evaluation of the impacts of different treatments of spatio-temporal variation in catch-per-unit-effort standardization models. Fish. Res. 213: 75–93.
Hansen G.J. and Jones M.L. 2008. The value of information in fishery management. Fisheries, 33(7): 340–348.
Hansen G.J., Ahrenstorff T.D., Bethke B.J., Dumke J.D., Hirsch J., Kovalenko K.E., et al. 2020. Walleye growth declines following zebra mussel and Bythotrephes invasion. Biol. Invasions, 22: 1481–1495.
Helser T.E. and Lai H.-L. 2004. A Bayesian hierarchical meta-analysis of fish growth: with an example for North American largemouth bass, Micropterus salmoides. Ecol. Modell. 178(3–4): 399–416.
Hilborn R. and Walters C.J. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Rev. Fish Biol. Fish. 2(2): 177–178.
Hocking D.J., Thorson J.T., O’Neil K., and Letcher B.H. 2018. A geostatistical state-space model of animal densities for stream networks. Ecol. Appl. 28(7): 1782–1796.
Höhne L., Palmer M., Monk C.T., Matern S., Nikolaus R., Trudeau A., and Arlinghaus R. 2020. Environmental determinants of perch (Perca fluviatilis) growth in gravel pit lakes and the relative performance of simple versus complex ecological predictors. Ecol. Freshw. Fish. 29(4): 557–573.
Hurlbert S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54(2): 187–211.
Isaak D.J., Peterson E.E., Ver Hoef J.M., Wenger S.J., Falke J.A., Torgersen C.E., et al. 2014. Applications of spatial statistical network models to stream data. Wiley Interdiscip. Rev. Water, 1(3): 277–294.
Kaemingk M.A., Chizinski C.J., Hurley K.L., and Pope K.L. 2018. Synchrony — An emergent property of recreational fisheries. J. Appl. Ecol. 55(6): 2986–2996.
Koenigs R.P., Bruch R.M., Stelzer R.S., and Kamke K.K. 2015. Validation of otolith ages for walleye (Sander vitreus) in the Winnebago System. Fish. Res. 167: 13–21.
Korman J., Yard M.D., and Kennedy T.A. 2017. Trends in Rainbow Trout recruitment, abundance, survival, and growth during a boom-and-bust cycle in a tailwater fishery. Trans. Am. Fish. Soc. 146(5): 1043–1057.
Kristensen K., Nielsen A., Berg C.W., Skaug H., and Bell B. 2015. TMB: automatic differentiation and Laplace approximation. J. Stat. Software, arXiv preprint arXiv:1509.00660.
Latimer A., Banerjee S., Sang H. Jr., Mosher E., and Silander J. Jr. 2009. Hierarchical models facilitate spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States. Ecol. Lett. 12(2): 144–154.
Lee Q., Thorson J.T., Gertseva V.V., and Punt A.E. 2017. The benefits and risks of incorporating climate-driven growth variation into stock assessment models, with application to Splitnose Rockfish (Sebastes diploproa). ICES J. Mar. Sci. 75(1): 245–256.
Lester N.P., Marshall T.R., Armstrong K., Dunlop W.I., and Ritchie B. 2003. A broad-scale approach to management of Ontario’s recreational fisheries. N. Am. J. Fish. Manage. 23(4): 1312–1328.
Lester N., Shuter B., and Abrams P. 2004. Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction. Proc. R. Soc. Ser. B Biol. Sci. 271(1548): 1625–1631.
Lester N.P., Shuter B.J., Venturelli P., and Nadeau D. 2014. Life-history plasticity and sustainable exploitation: a theory of growth compensation applied to walleye management. Ecol. Appl. 24(1): 38–54.
Lindgren F. and Rue H. 2015. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63(19): 1–25.
Lindgren F., Rue H., and Lindström J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(4): 423–498.
Lorenzen K. and Camp E.V. 2019. Density-dependence in the life history of fishes: when is a fish recruited? Fish. Res. 217: 5–10.
Lorenzen K., Cowx I.G., Entsua-Mensah R., Lester N.P., Koehn J., Randall R., et al. 2016. Stock assessment in inland fisheries: a foundation for sustainable use and conservation. Rev. Fish Biol. Fish. 26(3): 405–440.
Lynch A.J., Cooke S.J., Deines A.M., Bower S.D., Bunnell D.B., Cowx I.G., et al. 2016. The social, economic, and environmental importance of inland fish and fisheries. Environ. Rev. 24(2): 115–121.
Matthias B.G., Ahrens R.N., Allen M.S., Tuten T., Siders Z.A., and Wilson K.L. 2018. Understanding the effects of density and environmental variability on the process of fish growth. Fish. Res. 198: 209–219.
McGilliard C.R., Punt A.E., Methot R.D. Jr., and Hilborn R. 2015. Accounting for marine reserves using spatial stock assessments. Can. J. Fish. Aquat. Sci. 72(2): 262–280.
Miller T.J., O’Brien L., and Fratantoni P.S. 2018. Temporal and environmental variation in growth and maturity and effects on management reference points of Georges Bank Atlantic cod. Can. J. Fish. Aquat. Sci. 75(12): 2159–2171.
Morgan, G.E. 2002. Manual of instructions: fall walleye index netting (FWIN). Percid Community Synthesis, Diagnostics and Sampling Standards Working Group. Ontario.
Myers R., Mertz G., and Bridson J. 1997. Spatial scales of interannual recruitment variations of marine, anadromous, and freshwater fish. Can. J. Fish. Aquat. Sci. 54(6): 1400–1407.
Nichols J.D. and Williams B.K. 2006. Monitoring for conservation. Trends Ecol. Evol. 21(12): 668–673.
Ogle, D., Brenden, T., and McCormick, J. 2017. Growth estimation: growth models and statistical inference. Age and growth of fishes: principles and techniques. American Fisheries Society, Bethesda, Maryland. pp. 265–359.
Pedersen E.J., Goto D., Gaeta J.W., Hansen G.J.A., Sass G.G., Vander Zanden M.J., et al. 2018. Long-term growth trends in northern Wisconsin walleye populations under changing biotic and abiotic conditions. Can. J. Fish. Aquat. Sci. 75(5): 733–745.
Pinheiro, J., and Bates, D. 2006. Mixed-effects models in S and S-PLUS. Springer Science and Business Media.
Post J. 2013. Resilient recreational fisheries or prone to collapse? A decade of research on the science and management of recreational fisheries. Fisheries Management and Ecology 20(2–3): 99–110.
Post J.R., Parkinson E., and Johnston N. 1999. Density-dependent processes in structured fish populations: interaction strengths in whole-lake experiments. Ecol. Monogr. 69(2): 155–175.
Post J.R., Sullivan M., Cox S., Lester N.P., Walters C.J., Parkinson E.A., et al. 2002. Canada’s recreational fisheries: the invisible collapse? Fisheries, 27(1): 6–17.
Post J., Persson L., Parkinson E.V., and Kooten T.V. 2008. Angler numerical response across landscapes and the collapse of freshwater fisheries. Ecol. Appl. 18(4): 1038–1049.
Punt A.E. and Hilborn R. 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish Biol. Fish. 7(1): 35–63.
R Core Team. 2019. R: a language and environment for statistical computing [online]. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org.
Rennie M.D., Purchase C.F., Lester N., Collins N.C., Shuter B.J., and Abrams P.A. 2008. Lazy males? Bioenergetic differences in energy acquisition and metabolism help to explain sexual size dimorphism in percids. J. Anim. Ecol. 77(5): 916–926.
Roberts D.R., Bahn V., Ciuti S., Boyce M.S., Elith J., Guillera-Arroita G., et al. 2017. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8): 913–929.
Royle, J.A., and Dorazio, R.M. 2008. Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press.
Royle, J.A., Chandler, R.B., Sollmann, R., and Gardner, B. 2013. Spatial capture–recapture. Academic Press.
Rue, H., and Follestad, T. 2001. GMRFLib: a C-library for fast and exact simulation of Gaussian Markov random fields. Version 1.07 [online]. Available from https://cds.cern.ch/record/550893/files/sis-2002-236.pdf.
Rypel A.L., Goto D., Sass G.G., and Vander Zanden M.J. 2018. Eroding productivity of walleye populations in northern Wisconsin lakes. Can. J. Fish. Aquat. Sci. 75(12): 2291–2301.
Shuter B.J., Jones M.L., Korver R.M., and Lester N.P. 1998. A general, life history based model for regional management of fish stocks: the inland lake trout Salvelinus namaycush fisheries of Ontario. Can. J. Fish. Aquat. Sci. 55(9): 2161–2177.
Skaug H.J. and Fournier D.A. 2006. Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models. Comput. Stat. Data Anal. 51(2): 699–709.
South, A. 2017. rnaturalearth: World map data from Natural Earth. R package version 0.1.0.
Spencer, S. 2010. The increasing prevalence of smaller fish in highly exploited fisheries: concerns, diagnosis and management solutions. Ph.D. thesis, University of Alberta.
Sullivan M.G. 2003. Active management of walleye fisheries in Alberta: dilemmas of managing recovering fisheries. N. Am. J. Fish. Manage. 23(4): 1343–1358.
Thorson J.T., Scheuerell M.D., Shelton A.O., See K.E., Skaug H.J., and Kristensen K. 2015a. Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. Methods Ecol. Evol. 6(6): 627–637.
Thorson J.T., Skaug H.J., Kristensen K., Shelton A.O., Ward E.J., Harms J.H., and Benante J.A. 2015b. The importance of spatial models for estimating the strength of density dependence. Ecology, 96(5): 1202–1212.
Tsehaye I., Roth B.M., and Sass G.G. 2016. Exploring optimal walleye exploitation rates for northern Wisconsin Ceded Territory lakes using a hierarchical Bayesian age-structured model. Can. J. Fish. Aquat. Sci. 73(9): 1413–1433.
van Poorten B.T. and MacKenzie C.J. 2020. Using Decision Analysis to Balance Angler Utility and Conservation in a Recreational Fishery. N. Am. J. Fish. Manage. 40(1): 29–47.
van Poorten B.T. and Walters C.J. 2016. How can bioenergetics help us predict changes in fish growth patterns? Fish. Res. 180: 23–30.
Wagner T., Bence J.R., Bremigan M.T., Hayes D.B., and Wilberg M.J. 2007. Regional trends in fish mean length at age: components of variance and the statistical power to detect trends. Can. J. Fish. Aquat. Sci. 64(7): 968–978.
Walters, C.J. 1986. Adaptive management of renewable resources. Macmillan Publishers Ltd.
Walters C. and Essington T. 2010. Recovery of bioenergetics parameters from information on growth: overview of an approach based on statistical analysis of tagging and size-at-age data. Open Fish Sci. J. 3(1): 52–68.
Walters C.J. and Post J.R. 1993. Density-dependent growth and competitive asymmetries in size-structured fish populations: a theoretical model and recommendations for field experiments. Trans. Am. Fish. Soc. 122(1): 34–45.
Walters C.J., Collie J.S., and Webb T. 1988. Experimental designs for estimating transient responses to management disturbances. Can. J. Fish. Aquat. Sci. 45(3): 530–538.
Wang T., Hamann A., Spittlehouse D.L., and Murdock T.Q. 2012. ClimateWNA — high-resolution spatial climate data for western North America. J. Appl. Meteorol. Climatol. 51(1): 16–29.
Ward H.G., Post J.R., Lester N.P., Askey P.J., and Godin T. 2016. Empirical evidence of plasticity in life-history characteristics across climatic and fish density gradients. Can. J. Fish. Aquat. Sci. 74(4): 464–474.
Williams P.J., Hooten M.B., Womble J.N., Esslinger G.G., and Bower M.R. 2018. Monitoring dynamic spatio-temporal ecological processes optimally. Ecology, 99(3): 524–535.
Wilson K.L., Cantin A., Ward H.G., Newton E.R., Mee J.A., Varkey D.A., et al. 2016. Supply–demand equilibria and the size–number trade-off in spatially structured recreational fisheries. Ecol. Appl. 26(4): 1086–1097.
Wilson K.L., De Gisi J., Cahill C.L., Barker O.E., and Post J.R. 2019a. Life-history variation along environmental and harvest clines of a northern freshwater fish: Plasticity and adaptation. J. Anim. Ecol. 88(5): 717–733.
Wilson K.L., Foos A., Barker O.E., Farineau A., De Gisi J., and Post J.R. 2019b. Social–ecological feedbacks drive spatial exploitation in a northern freshwater fishery: A halo of depletion. J. Appl. Ecol. 57: 206–218.
Zuur A.F. and Ieno E.N. 2016. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7(6): 636–645.
Zuur A.F., Ieno E.N., and Elphick C.S. 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1(1): 3–14.
Zuur, A.F., Ieno, E.N., and Saveliev, A.A. 2017. Spatial, temporal and spatial–temporal ecological data analysis with R-INLA. Highland Statistics Ltd.

Supplementary Material

Supplementary data (cjfas-2019-0434suppla.docx)
Supplementary data (cjfas-2019-0434supplb.pdf)
Supplementary data (cjfas-2019-0434supplc.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 77Number 11November 2020
Pages: 1822 - 1835

History

Received: 9 December 2019
Accepted: 3 August 2020
Accepted manuscript online: 19 August 2020
Version of record online: 19 August 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Christopher L. Cahill [email protected]
Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
Sean C. Anderson*
Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road Nanaimo, BC V6T 6N7, Canada.
Andrew J. Paul
Fish and Wildlife, Alberta Environment and Parks, Provincial Building, Cochrane, AB T4C 1A5, Canada.
Laura MacPherson
Fish and Wildlife, Alberta Environment and Parks 7th Floor, O.S. Longman Building 6909 116 Street Edmonton, AB T6H 4P2, Canada.
Michael G. Sullivan
Fish and Wildlife, Alberta Environment and Parks 7th Floor, O.S. Longman Building 6909 116 Street Edmonton, AB T6H 4P2, Canada.
Brett van Poorten
British Columbia Ministry of Environment and Climate Change Strategy, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada.
Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Carl J. Walters
Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
John R. Post
Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.

Notes

*
Sean C. Anderson currently serves as an Associate Editor; peer review and editorial decisions regarding this manuscript were handled by Daniel Goethel.
Present address: School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Error propagation in spatial length–weight models with implications for stock assessments
2. A hierarchical model of persistent and transient growth variation applied to Lake Superior lake trout
3. Statistical stream temperature modelling with SSN and INLA: an introduction for conservation practitioners
4. Synthesizing Professional Opinion and Published Science to Build a Conceptual Model of Walleye Recruitment
5. Improving estimation of length–weight relationships using spatiotemporal models
6. It’s Complicated and It Depends: A Review of the Effects of Ecosystem Changes on Walleye and Yellow Perch Populations in North America
7. Unveiling the recovery dynamics of walleye after the invisible collapse
8. Postrelease Survival and Migration Behavior of Adult Walleye Following Intracoelomic Transmitter Implantation Using Two Methods of Electro‐Immobilization
9. Empirical Evidence for Depensation in Freshwater Fisheries
10. Are Alberta’s Northern Pike Populations at Risk from Walleye Recovery?

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media