Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Stock-of-origin catch estimation of Atlantic bluefin tuna (Thunnus thynnus) based on observed spatial distributions

Publication: Canadian Journal of Fisheries and Aquatic Sciences
1 April 2021

Abstract

Atlantic bluefin tuna (Thunnus thynnus) are a large, highly migratory fish distributed throughout the North Atlantic Ocean and adjacent seas currently managed as two discrete stocks: western and eastern. Both stocks forage in the North Atlantic, and a high degree of intermixing occurs, which combined with limited single-stock survey data makes it difficult to assess the abundance and status of individual populations. In this study, we used movement patterns from a multidecadal tagging dataset to create monthly distribution maps for these two major stocks. We then used these maps to separate the overall catch records into stock-specific catch (catch per unit effort, CPUE) time series. We identified an increase in the past two decades in the proportion of catch estimated to come from the eastern stock, attributable to a decrease in CPUE in regions dominated by the western stock, relative to other regions. The stock-specific catch series can be used to improve the accuracy of stock assessments and inform spatial management.

Résumé

Les thons rouges de l’Atlantique (Thunnus thynnus) sont de grands poissons très migrateurs présents dans tout l’océan Atlantique Nord et les mers attenantes et ils sont actuellement gérés comme s’ils faisaient partie de deux stocks distincts, les stocks ouest et est. Les individus de ces deux stocks s’approvisionnent dans l’Atlantique Nord où un important mélange des deux stocks se produit qui, combiné à des données d’évaluation limitées sur chacun des stocks, complique l’évaluation de l’abondance et de l’état des différentes populations. Nous avons utilisé les motifs de déplacement obtenus d’un ensemble de données de marquage couvrant plusieurs décennies pour produire des cartes de répartition mensuelles pour ces deux grands stocks. Nous avons ensuite utilisé ces cartes pour séparer les prises rapportées globales en des séries chronologiques de prises (CPUE) propres à chacun des stocks. Nous relevons une augmentation, au cours des deux dernières décennies, de la proportion estimée des prises provenant du stock est, attribuable à une baisse de la CPUE dans des régions où le stock ouest est dominant par rapport aux autres régions. Les séries de données de prises propres au stock peuvent être utilisées pour améliorer l’exactitude des évaluations de stock et éclairer la gestion spatiale. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Abascal F.J., Medina A., De La Serna J.M., Godoy D., and Aranda G. 2016. Tracking bluefin tuna reproductive migration into the Mediterranean Sea with electronic pop‐up satellite archival tags using two tagging procedures. Fish. Oceanogr. 25(1): 54–66.
Becker, R.A., and Wilks, A.R. 2018. mapdata. R package version 2.3.0. Available from https://cran.r-project.org/web/packages/mapdata/mapdata.pdf.
Block B.A., Teo S.L.H., Walli A., Boustany A., Stokesbury M.J.W., Farwell C.J., et al. 2005. Electronic tagging and population structure of Atlantic Bluefin tuna. Nature, 434(7037): 1121–1127.
Boustany A.M., Reeb C.A., and Block B.A. 2008. Mitochondrial DNA and electronic tracking reveal population structure of Atlantic Bluefin tuna (Thunnus thynnus). Mar. Biol. 156(1): 13–24.
Cadrin S., Morse M., Kerr L., Secor D., and Siskey M. 2018. Exploratory stock assessment of eastern and western population-of-origin Atlantic bluefin tuna accounting for stock composition. Collect. Vol. Sci. Pap. ICCAT, 74(6): 3290–3304.
Cadrin S.X. 2020. Defining spatial structure for fishery stock assessment. Fish. Res. 221: 105397.
Carlsson J., McDowell J.R., Carlsson J.E.L., and Graves J.E. 2006. Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J. Hered. 98(1): 23–28.
Carruthers T., Kimoto A., Powers J., Kell L., Butterworth D.S., Lauretta M.V., and Kitakado T. 2016. Structure and estimation framework for Atlantic Bluefin tuna operating models. SCRS/2015/179: Collect. Vol. Sci. Pap. ICCAT, 72(7): 1782–1795.
Cermeño P., Quílez-Badia G., Ospina-Alvarez A., Sainz-Trápaga S., Boustany A.M., Seitz A.C., et al. 2015. Electronic tagging of Atlantic bluefin tuna (Thunnus thynnus, L.) reveals habitat use and behaviors in the Mediterranean Sea. PLoS ONE, 10(2): e0116638.
Corriero A., Karakulak S., Santamaria N., Deflorio M., Spedicato D., Addis P., Desantis S., Cirillo F., Fenech-Farrugia A., Vassallo-Agius R., and De La Serna J.M. 2005. Size and age at sexual maturity of female bluefin tuna (Thunnus thynnus L. 1758) from the Mediterranean Sea. J. Appl. Ichthyol. 21(6): 483–486.
Diaz G.A. and Turner S.C. 2007. Size frequency distribution analysis, age composition, and maturity of western bluefin tuna in the Gulf of Mexico from the US (1981–2005) and Japanese (1975–1981) longline fleets. ICCAT Collective Volume of Scientific Papers, 60(4): 1160–1170.
Druon J.-N., Fromentin J.-M., Hanke A.R., Arrizabalaga H., Damalas D., Tičina V., et al. 2016. Habitat suitability of the Atlantic bluefin tuna by size class: an ecological niche approach. Prog. Oceanogr. 142: 30–46.
Esri. 2011. ArcGIS Desktop: Release 10. Environmental System Research Institute, Redlands, Calif.
Fromentin J. 2009. Lessons from the past: investigating historical data from bluefin tuna fisheries. Fish Fish. 10(2): 197–216.
Fromentin J., Reygondeau G., Bonhommeau S., and Beaugrand G. 2014. Oceanographic changes and exploitation drive the spatio‐temporal dynamics of Atlantic bluefin tuna (Thunnus thynnus). Fish. Oceanogr. 23(2): 147–156.
Granger C.W.J. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37: 424–438.
Hanke A., Busawon D., Rooker J.R., and Secor D.H. 2016. Estimates of stock origin for bluefin tuna caught in western Atlantic fisheries from 1975 to 2013. Collect. Vol. Sci. Pap. ICCAT. 72(6): 1376–1393.
Hazen E.L., Carlisle A.B., Wilson S.G., Ganong J.E., Castleton M.R., Schallert R.J., et al. 2016. Quantifying overlap between the Deepwater Horizon oil spill and predicted Bluefin tuna spawning habitat in the Gulf of Mexico. Sci. Rep. 6: 33824.
ICCAT. 2017. Report of the Standing Committee on Research and Statistics. Available from https://www.iccat.int/Documents/Meetings/Docs/2017_SCRS_REP_ENG.pdf.
ICCAT. 2018. Executive Summary of Atlantic Bluefin Tuna. Available from https://www.iccat.int/Documents/SCRS/ExecSum/BFT_ENG.pdf.
Ingram G.W., Richards W.J., Lamkin J.T., and Muhling B. 2010. Annual indices of Atlantic Bluefin tuna (Thunnus thynnus) larvae in the Gulf of Mexico developed using delta-lognormal and multivariate models. Aquat. Living Resour. 23(1): 35–47.
Karakulak S., Oray I., Corriero A., Deflorio M., Santamaria N., Desantis S., and De Metrio G. 2004. Evidence of a spawning area for the bluefin tuna (Thunnus thynnus L.) in the eastern Mediterranean. J. Appl. Ichthyol. 20(4): 318–320.
Kerr, L.A., Cadrin, S.X., and Secor, D.H. 2012. Evaluating population effects and management implications of mixing between eastern and western Atlantic bluefin tuna stocks. ICES CM 13.
Kerr L.A., Cadrin S.X., Secor D.H., and Taylor N.G. 2017. Modeling the implications of stock mixing and life history uncertainty of Atlantic bluefin tuna. Can. J. Fish. Aquat. Sci. 74(11): 1990–2004.
Kerr L.A., Whitener Z.T., Cadrin S.X., Morse M.R., Secor D.H., and Golet W. 2020. Mixed stock origin of Atlantic bluefin tuna in the U.S. rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fish. Res. 224: 105461.
Mather, F.J., Mason, J.M., and Jones, A.C. 1995. Historical document: life history and fisheries of Atlantic bluefin tuna. Available from https://repository.library.noaa.gov/view/noaa/8461/noaa_8461_DS1.pdf.
Morse M., Cadrin S.X., Kerr L.A., Secor D.H., Siskey M., Arrizabalaga H., et al. 2018. An updated analysis of bluefin tuna stock mixing. Collect. Vol. Sci. Pap. ICCAT, 74(6): 3486–3509.
Puncher G.N., Cariani A., Maes G.E., Van Houdt J., Herten K., Cannas R., et al. 2018. Spatial dynamics and mixing of bluefin tuna in the Atlantic Ocean and Mediterranean Sea revealed using next‐generation sequencing. Mol. Ecol. Resour. 18(3): 620–638.
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.r-project.org.
Richardson D.E., Marancik K.E., Guyon J.R., Lutcavage M.E., Galuardi B., Lam C.H., et al. 2016. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus). Proc. Natl. Acad. Sci. U.S.A. 113(12): 3299–3304.
Ripley, B. 2011. MASS: support functions and datasets for Venables and Ripley’s MASS. R Package, version 3-7. Available from https://cran.r-project.org/web/packages/MASS/index.html.
Rodríguez-Ezpeleta N., Díaz-Arce N., Walter J.F., Richardson D.E., Rooker J.R., Nøttestad L., et al. 2019. Determining natal origin for improved management of Atlantic bluefin tuna. Front. Ecol. Environ. 17: 439–444.
Rooker J.R., Alvarado Bremer J.R., Block B.A., Dewar H., De Metrio G., Corriero A., et al. 2007. Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev. Fish. Sci. 15(4): 265–310.
Rooker J.R., Secor D.H., De Metrio G., Schloesser R., Block B.A., and Neilson J.D. 2008. Natal homing and connectivity in Atlantic bluefin tuna populations. Science, 322(5902): 742–744.
Rouyer T. and Miller S. 2019. Updated fishing capacity estimates for bluefin tuna in, the eastern Atlantic and Mediterranean sea. Collect. Vol. Sci. Pap. ICCAT. 75(6): 1353–1362.
Rouyer T., Kimoto A., Kell L., Walter J.F., Lauretta M., Zarrad R., et al. 2018. Preliminary 2017 stock assessment results for the Eastern and Mediterranean Atlantic bluefin tuna stock. ICCAT Col. Vol. Sci. Pap. 74: 3234–3275.
Schloesser R.W., Neilson J.D., Secor D.H., and Rooker J.R. 2010. Natal origin of Atlantic bluefin tuna (Thunnus thynnus) from Canadian waters based on otolith δ13C and δ18O. Can. J. Fish. Aquat. Sci. 67(3): 563–569.
Scott G.P., Turner S.C., Churchill G.B., Richards W.J., and Brothers E.B. 1993. Indices of larval bluefin tuna, Thunnus thynnus, abundance in the Gulf of Mexico; modelling variability in growth, mortality, and gear selectivity. Bull. Mar. Sci. 53(2): 912–929.
Stokesbury M.J.W., Teo S.L., Seitz A., O’Dor R.K., and Block B.A. 2004. Movement of Atlantic bluefin tuna (Thunnus thynnus) as determined by satellite tagging experiments initiated off New England. Can. J. Fish. Aquat. Sci. 61(10): 1976–1987.
Taylor N.G., McAllister M.K., Lawson G.L., Carruthers T., and Block B.A. 2011. Atlantic bluefin tuna: a novel multistock spatial model for assessing population biomass. PLoS ONE, 6(12): e27693.
Teo S.L.H. and Block B.A. 2010. Comparative influence of ocean conditions on yellowfin and Atlantic bluefin tuna catch from longlines in the Gulf of Mexico. PLoS ONE, 5(5): e10756.
Teo S.L.H., Boustany A.M., and Block B.A. 2007. Oceanographic preferences of Atlantic bluefin tuna, Thunnus thynnus, on their Gulf of Mexico breeding grounds. Mar. Biol. 152(5): 1105–1119.
Venables, W.N., and Ripley, B.D. 2013. Modern applied statistics with S-PLUS. Springer Science & Business Media.
Walli A., Teo S.L.H., Boustany A., Farwell C.J., Williams T., Dewar H., et al. 2009. Seasonal movements, aggregations and diving behavior of Atlantic bluefin tuna (Thunnus thynnus) revealed with archival tags. PLoS ONE, 4(7): e6151.
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. Available from https://ggplot2.tidyverse.org.
Wilson S.G., Jonsen I.D., Schallert R.J., Ganong J.E., Castleton M.R., Spares A.D., et al. 2015. Tracking the fidelity of Atlantic bluefin tuna released in Canadian waters to the Gulf of Mexico spawning grounds. Can. J. Fish. Aquat. Sci. 72(11): 1700–1717.

Supplementary Material

Supplementary data (cjfas-2019-0445suppla.pptx)

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 78Number 8August 2021
Pages: 1193 - 1204

History

Received: 18 December 2019
Accepted: 4 March 2021
Accepted manuscript online: 1 April 2021
Version of record online: 1 April 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Emilius A. Aalto [email protected]
Hopkins Marine Station, Stanford University, Pacific Grove, Calif., USA.
Francesco Ferretti
Hopkins Marine Station, Stanford University, Pacific Grove, Calif., USA.
Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Va., USA.
Matthew V. Lauretta
NOAA Southeast Fisheries Science Center, Key Biscayne, Fla., USA.
John F. Walter
NOAA Southeast Fisheries Science Center, Key Biscayne, Fla., USA.
Michael J.W. Stokesbury
Biology Department, Acadia University, Wolfville, N.S., Canada.
Robert J. Schallert
Hopkins Marine Station, Stanford University, Pacific Grove, Calif., USA.
Barbara A. Block
Hopkins Marine Station, Stanford University, Pacific Grove, Calif., USA.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Unidirectional trans‐Atlantic gene flow and a mixed spawning area shape the genetic connectivity of Atlantic bluefin tuna
2. Identifying the ecologically significant habitats of Yellow-fin tuna (Thunnus albacares, Bonnaterre, 1788) of Iranian purse seine fishery in the Gulf of Oman and Indian Ocean: An approach using satellite imagery and fishery data
3. Assignment of tracks from tagged Atlantic bluefin tuna Thunnus thynnus to potential stocks using behavioural differences and habitat partitioning
4. Evidence of bluefin tuna ( Thunnus thynnus ) spawning in the Slope Sea region of the Northwest Atlantic from electronic tags
5. New technologies can support data collection on endangered shark species in the Mediterranean Sea

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media