Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Surface water connectivity affects lake and stream fish species richness and composition

Publication: Canadian Journal of Fisheries and Aquatic Sciences
22 November 2020

Abstract

Stream and lake fishes are important economic and recreational resources that respond to alterations in their surrounding watersheds and serve as indicators of ecological stressors on aquatic ecosystems. Research suggests that fish species diversity is largely influenced by surface water connectivity, or the lack thereof; however, few studies consider freshwater connections and their effect on both lake and stream fish communities across broad spatial extents. We used fish data from 559 lakes and 854 streams from the midwestern–northeastern United States to examine the role of surface water connectivity on fish species richness and community composition. We found that although lakes and streams share many species, connectivity had a positive effect on species richness across lakes and streams and helped explain species composition. Taking an integrated approach that includes both lake and stream fish communities and connectivity among freshwaters helps inform scientific understanding of what drives variation in fish species diversity at broad spatial scales and can help managers who are faced with planning for state-, regional-, or national-scale monitoring and restoration.

Résumé

Les poissons de cours d’eau et de lac constituent d’importantes ressources économiques et récréatives qui réagissent aux changements dans les bassins versants qui les entourent et servent d’indicateurs des facteurs de stress écologiques pour les écosystèmes aquatiques. Si des travaux de recherche indiqueraient que la diversité spécifique des poissons est largement influencée par la connectivité des eaux de surface ou l’absence de cette dernière, peu d’études se sont penchées sur les connexions de plans d’eau douce et leur effet sur les communautés de poissons de lacs et de cours d’eau à grande échelle. Nous avons utilisé des données sur les poissons de 559 lacs et 854 cours d’eau dans les États du centre-ouest et du nord-est des États-Unis pour examiner le rôle de la connectivité des eaux de surface en ce qui concerne la richesse spécifique et la composition des communautés de poissons. Nous avons constaté que, bien que les lacs et cours d’eau comptent de nombreuses espèces en commun, la connectivité a un effet positif sur la richesse spécifique des lacs et des cours d’eau en général et aide à en expliquer la composition spécifique. Une approche intégrée qui inclut les communautés tant des lacs que des cours d’eau et la connectivité des plans d’eau douce favorise une meilleure compréhension scientifique des facteurs de variation de la diversité spécifique à de grandes échelles spatiales et peut aider les gestionnaires dans la planification de la surveillance et de la restauration à l’échelle étatique, régionale ou nationale. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Abell R. 2002. Conservation biology for the biodiversity crisis: a freshwater follow-up. Conserv. Biol. 16(5): 1435–1437.
Abell R., Thieme M.L., Revenga C., Bryer M., Kottelat M., Bogutskaya N., et al. 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58(5): 403–414.
Acreman M., Hughes K.A., Arthington A.H., Tickner D., and Dueñas M.A. 2019. Protected areas and freshwater biodiversity: a novel systematic review distils eight lessons for effective conservation. Conserv. Lett. 13: 1–14.
Aggemyr E., Auffret A.G., Jädergård L., and Cousins S.A.O. 2018. Species richness and composition differ in response to landscape and biogeography. Landsc. Ecol. 33: 2273–2284.
Alger, B.M. 2009. Measuring anthropogenic disturbances in a hydrogeomorphic-based lake classification built using fish assemblages in 360 north-temperate lakes. M.Sc. thesis, Department of Fisheries and Wildlife, Michigan State University, East Lansing, Mich.
Allan, D.J., Palmer, M., and Poff, N.L. 2005. Climate change and freshwater ecosystems. In Climate change and biodiversity. Edited by T.E. Lovejoy and L. Hannah. Yale University Press, New Haven, Conn. pp. 272–290.
Anderson, M.J. 2017. Permutational multivariate analysis of variance (PERMANOVA). Edited by N. Balakrishnan et al. Wiley StatsRef: Statistics Reference Online. Wiley Online Library. Available from https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat07841.
Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19(1): 134–143.
Beisner B.E., Peres-Neto P.R., Lindström E.S., Barnett A., and Longhi M.L. 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology, 87(8712): 2985–2991.
Braoudakis G.V. and Jackson D.A. 2016. Effect of lake size, isolation and top predator presence on nested fish community structure. J. Biogeogr. 43: 1425–1435.
Butchart S.H.M., Walpole M., Collen B., van Strien A., Scharlemann J.P.W., Almond R.E.A., et al. 2010. Global biodiversity: indicators of recent declines. Science, 328: 1164–1168.
Chaloner D.T. and Wotton R.S. 2011. Overview: the links that bind aquatic ecosystems. J. N. Am. Benthol. Soc. 30: 751–761.
Colvin S.A.R., Sullivan S.M.P., Shirey P.D., Colvin R.W., Winemiller K.O., Hughes R.M., et al. 2019. Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem services. Fisheries, 44(2): 73–91.
Cooper A.R., Infante D.M., Wehrly K.E., Wang L., and Brenden T.O. 2016. Identifying indicators and quantifying large-scale effects of dams on fishes. Ecol. Indic. 61: 646–657.
Daniel W.M., Infante D.M., Hughes R.M., Tsang Y., Esselman P., Wieferich P.C., et al. 2015. Characterizing coal and mineral mines as a regional source of stress to stream fish assemblages. Ecol. Indic. 50: 50–61.
Dodson S.I., Arnott S.E., and Cottingham K.L. 2000. The relationship in lake communities between primary productivity and species richness. Ecology, 81: 2662–2679.
Dormann C.F., McPherson J.M., Araújo M.B., Bivand R., Bolliger J., Carl G., et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30(5): 609–628.
Downing A. 2005. Relative effects of species composition and richness on ecosystem properties in ponds. Ecology, 86(3): 701–715.
Drake M.T. and Pereira D.L. 2002. Development of a fish-based index of biotic integrity for small inland lakes in Central Minnesota. N. Am. J. Fish. Manage. 224(22): 1105–1123.
Eadie J.M., Hurly T.A., Montgomerie R.D., and Teather K.L. 1986. Lakes and rivers as islands: species–area relationships in the fish faunas of Ontario. Environ. Biol. Fishes, 15: 81–89. Available from https://link.springer.com/content/pdf/10.1007/BF00005423.pdf
Erős T., O’Hanley J.R., and Czeglédi I. 2018. A unified model for optimizing riverscape conservation. J. Appl. Ecol. 55(4): 1871–1883.
Esri. 2014. ArcGIS desktop: release 10.3. Environmental Systems Research Institute, Redlands, Calif.
Esselman P.C., Infante D.M., Wang L., Wu D., Cooper A.R., and Taylor W.W. 2011. An index of cumulative disturbance to river fish habitats of the conterminous United States from landscape anthropogenic activities. Ecol. Restor. 29(1–2): 133–151.
Fausch K.D., Rieman B.E., Dunham J.B., Young M.K., and Peterson D.P. 2009. Invasion versus isolation: trade-offs in managing native salmonids with barriers to upstream movement. Conserv. Biol. 23(4): 859–870.
Fergus C.E., Lapierre J.F., Oliver S.K., Skaff N.K., Cheruvelil K.S., Webster K., et al. 2017. The freshwater landscape: lake, wetland, and stream abundance and connectivity at macroscales. Ecosphere, 8(8): e01911.
Gauch, H.G., Jr. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge.
Google Earth Pro. 2019. NOAA. Available from https://www.google.com/earth [accessed 1 November 2019].
Gotelli N.J. and Chao A. 2013. Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. Encycl. Biodivers. Second Ed. 5: 195–211.
Griffiths D. 2015. Connectivity and vagility determine spatial richness gradients and diversification of freshwater fish in North America and Europe. Biol. J. Linn. Soc. 116(4): 773–786.
Hansen G.J.A., Read J.S., Hansen J.F., and Winslow L.A. 2017. Projected shifts in fish species dominance in Wisconsin lakes under climate change. Global Change Biol. 23(4): 1463–1476.
Harris J.H. 1995. The use of fish in ecological assessments. Aust. J. Ecol. 20: 65–80.
Heim K.C., Arp C.D., Whitman M.S., and Wipfli M.S. 2019. The complementary role of lentic and lotic habitats for Arctic grayling in a complex stream–lake network in Arctic Alaska. Ecol. Freshw. Fish, 28(2): 209–221.
Henriques-Silva R., Logez M., Reynaud N., Tedesco P.A., Brosse S., Januchowski-Hartley S.R., et al. 2019. A comprehensive examination of the network position hypothesis across multiple river metacommunities. Ecography, 42(2): 284–294.
Hitt N.P. and Angermeier P.L. 2008. Evidence for fish dispersal from spatial analysis of stream network topology. J. N. Am. Benthol. Soc. 27(2): 304–320.
Hitt N.P. and Angermeier P.L. 2011. Fish community and bioassessment responses to stream network position. J. N. Am. Benthol. Soc. 30(1): 296–309.
Hsieh, T.C., Ma, K.H., and Chao, A. 2020. iNEXT: interpolation and extrapolation for species diversity. R package version 2.0.2. Available from https://CRAN.R-project.org/package=iNEXT.
Hughes R.M., Kaufmann P.R., and Weber M.H. 2011. National and regional comparisons between Strahler order and stream size. J. N. Am. Benthol. Soc. 30(1): 103–121.
Husson, F., Josse, J., Le, S., and Mazet, J., 2020. FactoMineR: multivariate exploratory data analysis and data mining. R package version 2.2. Available from https://CRAN.R-project.org/package=FactoMineR.
Irz P., Odion M., Argillier C., and Pont D. 2006. Comparison between the fish communities of lakes, reservoirs and rivers: can natural systems help define the ecological potential of reservoirs? Aquat. Sci. 68: 109–116.
Irz P., Michonneau F., Oberdorff T., Whittier T.R., Lamouroux N., Mouillot D., and Argillier C. 2007. Fish community comparisons along environmental gradients in lakes of France and north-east USA. Global Ecol. Biogeogr. 16: 350–366.
Isaak D.J., Young M.K., Nagel D.E., Horan D.L., and Groce M.C. 2015. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Global Change Biol. 21(7): 2540–2553.
Jackson C.R. and Pringle C.M. 2010. Ecological benefits of reduced hydrologic connectivity in intensively developed landscapes. BioScience, 60(1): 37–46.
Jackson D.A., Peres-Neto P.R., and Olden J.D. 2001. What controls who is where in freshwater fish communities — the roles. Can. J. Fish. Aquat. Sci. 58(1): 157–170.
Jones N.E. 2010. Incorporating lakes within the river discontinuum: longitudinal changes in ecological characteristics in stream–lake networks. Can. J. Fish. Aquat. Sci. 67(8): 1350–1362.
King, K. 2020. Code and data for lake and stream fish species richness and composition. Github repository code and data. Zenodo. Available from https://doi.org/10.5281/zenodo.4266961.
King K., Cheruvelil K.S., and Pollard A. 2019. Drivers and spatial structure of abiotic and biotic properties of lakes, wetlands, and streams at the national scale. Ecol. Appl. 29: e01957.
Kratz T., Webster K., Bowser C., Magnuson J., and Benson B. 1997. The influence of landscape position on lakes in northern Wisconsin. Freshw. Biol. 37(1): 209–217.
Lenth, R. 2019. Emmeans: estimated marginal means, a.k.a. least-squares means. R package version 1.4.1. Available from https://CRAN.R-project.org/package=emmeans.
Lyons J. 1996. Patterns in the species composition of fish assemblages among Wisconsin streams. Environ. Biol. Fishes, 45: 329–341.
MacArthur, R.H. and Wilson, E.O. 1967. The theory of island biogeography. Princeton University Press, Princeton, N.J.
Magnuson J.J., Tonn W.M., Banerjee A., Toivonen J., Sanchez O., and Rask M. 1998. Isolation vs. extinction in the assembly of fishes in small northern lakes. Ecology, 79: 2941–2956.
McCluney K.E., Poff L., Palmer M.A., Thorp J.H., Poole G.C., Williams B.S., et al. 2014. Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river basins with human alterations. Front. Ecol. Environ. 12(1): 48–58.
McCullough I.M., King K.B.S., Stachelek J., Diaz J., Soranno P.A., and Cheruvelil K.S. 2019. Applying the patch-matrix model to lakes: a connectivity-based conservation framework. Landsc. Ecol. 34: 2703–2718.
Mellado-Díaz A., Sánchez-González J.R., Guareschi S., Magdaleno F., and Velasco M.T. 2019. Exploring longitudinal trends and recovery gradients in macroinvertebrate communities and biomonitoring tools along regulated rivers. Sci. Total Environ. 695: 133774.
Niu S.Q., Franczyk M.P., and Knouft J.H. 2012. Regional species richness, hydrological characteristics and the local species richness of assemblages of North American stream fishes. Freshw. Biol. 57(11): 2367–2377.
Oksanen, J.F., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. 2019. vegan: community ecology package. R package version 2.5-6. Available from https://CRAN.R-project.org/package=vegan.
Olden J.D., Jackson D.A., and Peres-Neto P.R. 2001. Spatial isolation and fish communities in drainage lakes. Oecologia, 127(4): 572–585.
Osborne L.L., Kohler S.L., Bayley P.B., Day D.M., Bertrand W.M., Wiley M.J., and Sauer R. 1992. Influence of stream location in a drainage network on the index of biotic integrity. Trans. Am. Fish. Soc. 121: 635–643.
Pépino M., Rodríguez M.A., and Magnan P. 2017. Incorporating lakes in stream fish habitat models: are we missing a key landscape attribute? Can. J. Fish. Aquat. Sci. 74(5): 629–635.
Qu Y., Wu N., Guse B., and Fohrer N. 2017. Riverine phytoplankton shifting along a lentic–lotic continuum under hydrological, physiochemical conditions and species dispersal. Sci. Total Environ. 619–620: 1628–1636.
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/.
Read, J.S. 2017. An integrated assessment of lake and stream thermal habitat under climate change. Report for Northeast Climate Science Center. USGS. ScienceBase-Catalog Version: 2.165.1. Available from https://www.sciencebase.gov/catalog/item/5a53d604e4b01e7be2308760.
Seaber, P.R., Kapinos, F.P., and Knapp, G.L. 1987. Hydrologic units maps, US Geological Survey Water Supply Paper 2294. Section 508. Available from http://www.usgs.gov/accessibility.html.
Soranno, P., and Cheruvelil, K. 2017a. LAGOS-NE-GEO v1.05: A module for LAGOS-NE, a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. Lakes: 1925–2013. Environmental Data Initiative. Available from https://doi.org/10.6073/pasta/b88943d10c6c5c480d5230c8890b74a8 [accessed 23 September 2019].
Soranno, P., and Cheruvelil, K. 2017b. LAGOS-NE-GIS v1.0: A module for LAGOS-NE, a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. Lakes: 2013–1925. Environmental Data Initiative. Available from https://doi.org/10.6073/pasta/fb4f5687339bec467ce0ed1ea0b5f0ca [accessed 23 September 2019].
Soranno P.A., Cheruvelil K.S., Webster K.E., Bremigan M.T., Wagner T., and Stow C.A. 2010. Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation. BioScience, 60(6): 440–454.
Soranno P.A., Bissell E.G., Cheruvelil K.S., Christel S.T., Collins S.M., Fergus C.E., et al. 2015. Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse. GigaScience, 4(1).
Soranno P.A., Bacon L.C., Beauchene M., Bednar K.E., Bissell E.G., Boudreau C.K., et al. 2017. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. lakes. Gigascience, 6(12): 1–22.
Stachelek, J. 2019. Tools for working with the National Hydrography Dataset. R package. Available from https://cran.r-project.org/package=nhdR.
Stachelek, J., and Oliver, S. 2019. LAGOSNE: interface to the lake multi-scaled geospatial and temporal database. R package version 2.0.1. Available from https://cran.r-project.org/package=LAGOSNE
Strahler A.N. 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union. 38: 913–920.
Tonkin J.D., Altermatt F., Finn D.S., Heino J., Olden J.D., Pauls S.U., and Lytle D.A. 2018. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 63: 141–163.
Tonn W.M. and Magnuson J.J. 1982. Patterns in the species composition and richness of fish assemblages in Northern Wisconsin lakes. Ecology, 63(4): 1149–1166.
Trigal C. and Degerman E. 2015. Multiple factors and thresholds explaining fish species distributions in lowland streams. Global Ecol. Conserv. 4: 589–601.
Troia M.J. and McManamay R.A. 2020. Biogeographic classification of streams using fish community– and trait–environment relationships. Divers. Distrib. 26(1): 108–125.
USEPA. 2016. National rivers and streams assessment 2008–2009. US Environmental Protection Agency, Washington, D.C. EPA/841/R-16/007.
USGS. 2019. National hydrography dataset. Technical Report. United States Geological Survey. Available from https://nhd.usgs.gov/.
Wehrly K.E., Breck J.E., Wang L., and Szabo-Kraft L. 2012. A landscape-based classification of fish assemblages in sampled and unsampled lakes. Trans. Am. Fish. Soc. 141: 414–425.
Wiens J.J. 2016. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14: e2001104.
Willis T.V. and Magnuson J.J. 2000. Patterns in fish species composition across the interface between streams and lakes. Can. J. Fish. Aquat. Sci. 57(5): 1042–1052.
Yang W., Ma K., and Kreft H. 2013. Geographical sampling bias in a large distributional database and its effects on species richness–environment models. J. Biogeogr. 40(8): 1415–1426.

Supplementary Material

Supplementary data (cjfas-2020-0090suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 78Number 4April 2021
Pages: 433 - 443

History

Received: 19 March 2020
Accepted: 8 November 2020
Accepted manuscript online: 22 November 2020
Version of record online: 22 November 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Katelyn B.S. King [email protected]
Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA.
Mary Tate Bremigan
Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA.
Dana Infante
Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA.
Kendra Spence Cheruvelil
Department of Fisheries and Wildlife and Lyman Briggs College, Michigan State University, East Lansing, Michigan, USA.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Visualizing preferential flow paths using dye tracer and species diversity theory methods to explore their correlation to soil properties with random forest algorithm
2. Application of Species Diversity Theory to Quantitatively Assess the Degree of Preferential Flow in Forest Ecosystems
3. Lake and Pond Ecosystems
4. River connectivity increases the diversity of fish communities in gravel pit lakes
5. Fish Beta Diversity Patterns across Environmental Gradients in 63 European Shallow Lakes: Effects of Turbidity, Nutrient Enrichment, and Exotic Species
6. Freshwater corridors in the conterminous United States: A coarse‐filter approach based on lake‐stream networks
7. Functional morphology of prey capture in stream-dwelling sailfin silversides (Telmatherinidae) based on high-speed video recordings
8. A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
9. Coupling Suspect and Nontarget Screening with Mass Balance Modeling to Characterize Organic Micropollutants in the Onondaga Lake–Three Rivers System
10. Lake networks and connectivity metrics for the conterminous U.S. ( LAGOS‐US NETWORKS v1)

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media