Does thermal plasticity affect susceptibility to capture in fish? Insights from a simulated trap and trawl fishery

Publication: Canadian Journal of Fisheries and Aquatic Sciences8 September 2020https://doi.org/10.1139/cjfas-2020-0125

Abstract

In fishes, physiological and behavioural traits can correlate with vulnerability to capture with fishing gears, highlighting the capacity of fisheries selection to drive phenotypic change in exploited populations. There remains a paucity of information regarding how different fishing gears may select on phenotypic traits and how relationships between individual traits and capture vulnerability change across environmental gradients. By simulating the capture process in a trawl and trap using wild minnows (Phoxinus phoxinus) acclimated to different temperatures, we investigated how contrasting fishing gears select on behavioural and physiological traits and how this selection is modulated by temperature. Despite similar risk of capture in each gear, selection differed between traps and trawls. Fish exhibiting low spontaneous activity were at greater capture risk in the trawl across all temperatures, while traps showed no selection except at 24 °C. No relationships between physiological traits and capture vulnerability were found, except between swim performance and trap capture vulnerability at 24 °C. This study demonstrates that fisheries selection on individual traits is likely context-specific, depending on both fishing gear type and environment.

Résumé

Chez les poissons, des caractères physiologiques et comportementaux peuvent être corrélés à la vulnérabilité à la capture par des engins de pêche, ce qui souligne la capacité de la sélection par la pêche d’entraîner des modifications phénotypiques dans les populations exploitées. Peu d’information est toutefois disponible sur la sélection de différents caractères phénotypiques pouvant découler de différents engins de pêche et sur les variations des relations entre des caractères précis et la vulnérabilité à la capture le long de gradients de conditions ambiantes. En simulant le processus de capture dans un chalut et un casier de ménés sauvages (Phoxinus phoxinus) acclimatés à différentes températures, nous avons examiné la sélection de caractères comportementaux et physiologiques par différents engins de pêche, et comment la température module cette sélection. Malgré le fait que le risque de capture est semblable pour les différents engins, la sélection varie entre les casiers et les chaluts. Les poissons présentant une faible activité spontanée ont un plus grand risque de capture dans un chalut à toutes les températures étudiées, alors que les casiers ne font pas preuve de sélection, saduf à 24 °C. Aucune relation entre des caractères physiologiques et la vulnérabilité à la capture n’est relevée, sauf entre la performance de nage et la vulnérabilité à la capture par les casiers à 24 °C. L’étude démontre que la sélection par la pêche de caractères précis dépend probablement du contexte, notamment du type d’engin de pêche et du milieu ambiant. [Traduit par la Rédaction]

Get full access to this article.

View all available purchase options and get full access to this article.

References

Andersen B.S., Jørgensen C., Eliassen S., and Giske J. 2016. The proximate architecture for decision-making in fish. Fish Fish. 17(3): 680–695.
Arlinghaus R., Laskowski K.L., Alós J., Klefoth T., Monk C.T., Nakayama S., and Schröder A. 2017. Passive gear-induced timidity syndrome in wild fish populations and its potential ecological and managerial implications. Fish Fish. 18(2): 360–373.
Arnold T.W. 2010. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manage. 74(6): 1175–1178.
Barton, K. 2009. Mu-MIn: Multi-model inference. R package version 0.12.2/r18 [online]. Available from http://R-Forge.R-project.org/projects/mumin/.
Bates D., Mächler M., Bolker B., and Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Software, 67(1): 1–48.
Biro P.A. and Post J.R. 2008. Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc. Natl. Acad. Sci. U.S.A. 105(8): 2919–2922.
Burton T., Killen S.S., Armstrong J.D., and Metcalfe N.B. 2011. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc. Biol. Sci. 278(1724): 3465–3473.
Cavieres G. and Sabat P. 2008. Geographic variation in the response to thermal acclimation in rufous-collared sparrows: Are physiological flexibility and environmental heterogeneity correlated? Funct. Ecol. 22(3): 509–515.
Chabot D., Steffensen J.F., and Farrell A.P. 2016. The determination of standard metabolic rate in fishes. J. Fish Biol. 88(1): 81–121.
Conover D.O. and Baumann H. 2009. The role of experiments in understanding fishery-induced evolution. Evol. Appl. 2(3): 276–290.
Diaz Pauli B. and Sih A. 2017. Behavioural responses to human-induced change: Why fishing should not be ignored. Evol. Appl. 10(3): 231–240.
Diaz Pauli B., Wiech M., Heino M., and Utne-Palm A.C. 2015. Opposite selection on behavioural types by active and passive fishing gears in a simulated guppy Poecilia reticulata fishery. J. Fish Biol. 86(3): 1030–1045.
Domenici, P., Herbert, N.A., Lefrançois, C., Steffensen, J.F., and McKenzie, D.J. 2013. The effect of hypoxia on fish swimming performance and behaviour. In Swimming physiology of fish: Towards using exercise to farm a fit fish in sustainable aquaculture. Edited by A.P. Palstra, and J.V. Planas. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 129–159.
Dunlop E.S., Enberg K., Jørgensen C., and Heino M. 2009. Editorial: Toward Darwinian fisheries management. Evol. Appl. 2(3): 245–259.
Enberg K., Jørgensen C., Dunlop E.S., Varpe Ø., Boukal D.S., Baulier L., et al. 2012. Fishing-induced evolution of growth: Concepts, mechanisms and the empirical evidence. Marine Ecology. 33(1): 1–25.
Heino M., Díaz Pauli B., and Dieckmann U.2015. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46(1): 461–480.
Hessenauer J.-M., Vokoun J.C., Suski C.D., Davis J., Jacobs R., and O'Donnell E. 2015. Differences in the metabolic rates of exploited and unexploited fish populations: A signature of recreational fisheries induced evolution? PloS ONE, 10(6): e0128336.
Hollins J., Thambithurai D., Koeck B., Crespel A., Bailey D.M., Cooke S.J., et al. 2018. A physiological perspective on fisheries-induced evolution. Evol. Appl. 11(5): 561–576.
Hollins J.P.W., Thambithurai D., Van Leeuwen T.E., Allan B., Koeck B., Bailey D., and Killen S.S. 2019. Shoal familiarity modulates effects of individual metabolism on vulnerability to capture by trawling. Conserv. Physiol. 7(1): coz043.
Horodysky A.Z., Cooke S.J., and Brill R.W. 2015. Physiology in the service of fisheries science: Why thinking mechanistically matters. Rev. Fish Biol. Fisheries, 25(3): 425–447.
Hvas M., Folkedal O., Imsland A., and Oppedal F. 2017. The effect of thermal acclimation on aerobic scope and critical swimming speed in atlantic salmon, Salmo salar. J. Exp. Biol. 220(Pt. 15): 2757–2764.
Johansen J.L., Messmer V., Coker D.J., Hoey A.S., and Pratchett M.S. 2014. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish. Glob. Change Biol. 20(4): 1067–1074.
Killen S.S., Marras S., and McKenzie D.J. 2011. Fuel, fasting, fear: Routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile european sea bass. J. Anim. Ecol. 80(5): 1024–1033.
Killen S.S., Marras S., Metcalfe N.B., McKenzie D.J., and Domenici P. 2013. Environmental stressors alter relationships between physiology and behaviour. Trends Ecol. Evol. 28(11): 651–658.
Killen S.S., Marras S., Ryan M.R., Domenici P., and McKenzie D. 2012a. A relationship between metabolic rate and risk‐taking behaviour is revealed during hypoxia in juvenile European sea bass. Funct. Ecol. 26(1): 134–143.
Killen S.S., Marras S., Steffensen J.F., and McKenzie D.J. 2012b. Aerobic capacity influences the spatial position of individuals within fish schools. Proc. R. Soc. B Biol. Sci. 279(1727): 357–364.
Killen S.S., Mitchell M.D., Rummer J.L., Chivers D.P., Ferrari M.C.O., Meekan M.G., and McCormick M.I. 2014. Aerobic scope predicts dominance during early life in a tropical damselfish. Funct. Ecol. 28(6): 1367–1376.
Killen S.S., Nati J.J.H., and Suski C.D. 2015a. Vulnerability of individual fish to capture by trawling is influenced by capacity for anaerobic metabolism. Proc. R. Soc. B Biol. Sci. 282(1813): 20150603.
Killen S.S., Reid D., Marras S., and Domenici P. 2015b. The interplay between aerobic metabolism and antipredator performance: Vigilance is related to recovery rate after exercise. Front. Physiol. 6: 111.
Killen S.S., Norin T., and Halsey L.G. 2017. Do method and species lifestyle affect measures of maximum metabolic rate in fishes?. J. Fish Biol. 90(3): 1037–1046.
Kim Y. and Wardle C. 2003. Optomotor response and erratic response quantitative analysis of fish reaction to towed fishing gears. Fish. Res. 60(2–3): 455–470.
Klefoth T., Skov C., Kuparinen A., and Arlinghaus R. 2017. Toward a mechanistic understanding of vulnerability to hook-and-line fishing: Boldness as the basic target of angling-induced selection. Evol. Appl. 10(10): 994–1006.
Koeck B., Závorka L., Aldvén D., Näslund J., Arlinghaus R., Thörnqvist P.-O., et al. 2019. Angling selects against active and stress-resilient phenotypes in rainbow trout. Can. J. Fish. Aquat. Sci. 76(2): 320–333.
Königson S.J., Fredriksson R.E., Lunneryd S.-G., Strömberg P., and Bergström U.M. 2015. Cod pots in a Baltic fishery: Are they efficient and what affects their efficiency? ICES J. Mar. Sci. 72(5): 1545–1554.
Laugen A.T., Engelhard G.H., Whitlock R., Arlinghaus R., Dankel D.J., Dunlop E.S., et al. 2014. Evolutionary impact assessment: Accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management. Fish Fish. 15(1): 65–96.
Louison M.J., Jeffrey J.D., Suski C.D., and Stein J.A. 2018a. Sociable bluegill, Lepomis macrochirus, are selectively captured via recreational angling. An. Behav. 142: 129–137.
Louison M.J., Stein J.A., and Suski C.D. 2018b. Metabolic phenotype is not associated with vulnerability to angling in bluegill sunfish (Lepomis macrochirus). Can. J. Zool. 96(11): 1264–1271.
Maldonado K., Bozinovic F., Cavieres G., Fuentes C.A., Cortés A., and Sabat P. 2012. Phenotypic flexibility in basal metabolic rate is associated with rainfall variability among populations of rufous-collared sparrow. Zoology, 115(2): 128–133.
Marras S., Claireaux G., McKenzie D.J., and Nelson J.A. 2010. Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass, Dicentrarchus labrax. J. Exp. Biol. 213(1): 26–32.
McKenzie, D.J. 2011. Swimming and other activities | energetics of fish swimming. In Encyclopedia of fish physiology. Edited by A.P. Farrell. Academic Press, San Diego. pp. 1636–1644.
McLean S., Persson A., Norin T., and Killen S.S. 2018. Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr. Biol. 28(7): 1144–1149. e1144.
Metcalfe N.B., Van Leeuwen T.E., and Killen S.S. 2016. Does individual variation in metabolic phenotype predict fish behaviour and performance? J. Fish Biol. 88(1): 298–321.
Meuthen D., Ferrari M.C.O., Lane T., and Chivers D.P. 2019. Plasticity of boldness: High perceived risk eliminates a relationship between boldness and body size in faoasis:thead minnows. Anim. Behav. 147: 25–32.
Monk C. and Arlinghaus R. 2017a. Perch, perca fluviatilis, spatial behaviour determines vulnerability independent of angler skill in a whole-lake reality mining experiment. Can. J. Fish. Aquat. Sci. 75(3): 417–428.
Monk C.T. and Arlinghaus R. 2017b. Encountering a bait is necessary but insufficient to explain individual variability in vulnerability to angling in two freshwater benthivorous fish in the wild. PloS ONE, 12(3): e0173989.
Nakagawa S. and Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Meth. Ecol. Evol., 4(2): 133–142.
Olsen E.M., Heupel M.R., Simpfendorfer C.A., and Moland E. 2012. Harvest selection on atlantic cod behavioral traits: Implications for spatial management. Ecol. Evol. 2(7): 1549–1562.
Redpath T.D., MacLatchy D., Cooke S.J., Suski C.D., Arlinghaus R., Couture P., et al. 2010. The metabolic and biochemical basis of vulnerability to recreational angling after three generations of angling-induced selection in a teleost fish. Can. J. Fish. Aquat. Sci. 67(12): 1983–1992.
Reznick D.N. and Ghalambor C.K. 2005. Can commercial fishing cause evolution? Answers from guppies (Poecilia reticulata). Can. J. Fish. Aquat. Sci. 62(4): 791–801.
Robins P.E., Skov M.W., Lewis M.J., Giménez L., Davies A.G., Malham S.K., et al. 2016. Impact of climate change on uk estuaries: A review of past trends and potential projections. Estuarine Coastal Shelf Sci. 169: 119–135.
Rome L.C. 1990. Influence of temperature on muscle recruitment and muscle function in vivo. Am. J. Physiol. 259(2 Pt. 2): R210–R222.
Rome L.C., Choi I.H., Lutz G., and Sosnicki A. 1992. The influence of temperature on muscle function in the fast swimming scup. I. Shortening velocity and muscle recruitment during swimming. J. Exp. Biol. 163: 259–279.
Rose, C. 1995. Behaviour of north pacific groundfish encountering trawls: Applications to reduce bycatch. In Solving Bycatch: Considerations for Today and Tomorrow. Alaska Sea Grant College Program Report AK-56-96-03. University of Alaska, Anchorage, Alaska. pp. 235–242.
Ryer C., Rose C., and Iseri P. 2009. Flatfish herding behaviour in response to trawl sweeps: A comparison of diel responses to conventional sweeps and elevated sweeps. Fish. Bull. 108: 145–154.
Ryer C.H. 2008. A review of flatfish behavior relative to trawls. Fish. Res. 90(1–3): 138–146.
Stoffel M.A., Nakagawa S., and Schielzeth H. 2017. Rptr: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8(11): 1639–1644.
Stoner A.W. 2004. Effects of environmental variables on fish feeding ecology: Implications for the performance of baited fishing gear and stock assessment. J. Fish Biol. 65(6): 1445–1471.
Svendsen J.C., Tirsgaard B., Cordero G.A., and Steffensen J.F. 2015. Intraspecific variation in aerobic and anaerobic locomotion: Giloasis:thead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport. Front. Physiol. 6: 43–43.
Thambithurai D., Hollins J., Van Leeuwen T., Rácz A., Lindström J., Parsons K., and Killen S.S. 2018. Shoal size as a key determinant of vulnerability to capture under a simulated fishery scenario. Ecol. Evol. 8(13): 6505–6514.
Therneau, T. 2020. A Package for Survival Analysis in R. R package version 3.2-7 [online]. Available from https://CRAN.R-project.org/package=survival.
Underwood M.J., Winger P.D., Fernö A., and Engås A. 2015. Behaviour-dependent selectivity of yellowtail flounder in the mouth of a commercial bottom trawl. FB. 113(4): 430–441.
Uusi-Heikkilä S., Wolter C., Klefoth T., and Arlinghaus R. 2008. A behavioral perspective on fishing-induced evolution. Trends Ecol. Evol. 23(8): 419–421.
Vainikka A., Tammela I., and Hyvärinen P. 2016. Does boldness explain vulnerability to angling in Eurasian perch Perca fluviatilis? Curr. Zool. 62(2): 109–115.
Villegas-Ríos D., Réale D., Freitas C., Moland E., and Olsen E.M. 2018. Personalities influence spatial responses to environmental fluctuations in wild fish. J. Anim. Ecol. 87(5): 1309–1319.
Ward T.D., Algera D.A., Gallagher A.J., Hawkins E., Horodysky A., Jørgensen C., et al. 2016. Understanding the individual to implement the ecosystem approach to fisheries management. Conserv. Physiol. 4: cow005.
Wilson A.D.M., Binder T.R., McGrath K.P., Cooke S.J., and Godin J.-G.J. 2011. Capture technique and fish personality: Angling targets timid bluegill sunfish, lepomis macrochirus. Can. J. Fish. Aquat. Sci. 68(5): 749–757.
Winger, P.D., Eayrs, S., and Glass, C.W. 2010. Fish behavior near bottom trawls. In Behavior of marine fishes. Edited by P. He.
Yanase K., Eayrs S., and Arimoto T. 2009. Quantitative analysis of the behaviour of the flaoasis:theads (Platycephalidae) during the trawl capture process as determined by real-time multiple observations. Fisheries Research. 95(1): 28–39.

Supplementary Material

Supplementary data (cjfas-2020-0125suppla.docx)

Information & Authors

Information

Published In

Canadian Journal of Fisheries and Aquatic Sciences cover image
Canadian Journal of Fisheries and Aquatic Sciences
Volume 78Number 1January 2021
Pages: 57 - 67

History

Received: 13 April 2020
Accepted: 16 August 2020
Published online: 8 September 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
B. Koeck
Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
A. Crespel
Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
D.M. Bailey
Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
S.S. Killen
Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Links between behaviour and metabolic physiology in fishes in the Anthropocene
2. Density influences the heritability and genetic correlations of fish behaviour under trawling‐associated selection

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

Full Text

Open Full Text

PDF

Download PDF

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Share on social media