Editor's Choice

Factors influencing the structure of macroinvertebrate communities in subarctic lakes affected by wildfires

Publication: Canadian Journal of Fisheries and Aquatic Sciences
20 October 2020

Abstract

Fires are a natural phenomenon in the boreal forest, but their frequency is expected to increase over the coming century. Fires may affect water quality and invertebrates in lakes, but there have been few studies in the northern boreal forest to describe these impacts. We collected data on water quality, macrophytes, and invertebrates from 20 lakes in the Sahtú Settlement Area of the Northwest Territories. Nine lakes were affected by fires in their catchments 4–5 years before data collection, while eleven were not. Our results showed that few water quality variables were associated with fires. However, remote sensing and field observations suggested that macrophyte biomass was higher in lakes affected by burns, and this variable was a significant predictor of invertebrate composition. Burn history was an important predictor of the richness and abundance of invertebrates, but natural variability in lake properties was more important for explaining differences among lakes. Our results suggest that a better understanding of the effects of wildfires might be gained by examining how postfire changes in macrophytes affect other trophic levels.

Résumé

Si le feu est un phénomène naturel dans la forêt boréale, sa fréquence est appelée à augmenter au cours du siècle à venir. Bien que le feu puisse avoir une incidence sur la qualité de l’eau et les invertébrés dans les lacs, peu d’études dans la forêt boréale septentrionale ont décrit ces effets. Nous avons recueilli des données sur la qualité de l’eau, les macrophytes et les invertébrés de 20 lacs dans la région désignée du Sahtu des Territoires-du-Nord-Ouest. Il y avait eu des feux dans les bassins versants de neuf de ces lacs au cours de 4–5 années précédant la collecte de données, mais non dans ceux des onze autres lacs. Nos résultats démontrent que peu de variables relatives à la qualité de l’eau sont associées aux feux. La télédétection et des observations de terrain donnent toutefois à penser que la biomasse de macrophytes est plus grande dans les lacs touchés par le feu, et cette variable constitue un prédicteur significatif de la composition des invertébrés. L’historique des feux est un important prédicteur de la richesse et de l’abondance des invertébrés, mais la variabilité naturelle des propriétés des lacs est plus importante pour ce qui est d’expliquer les différences entre lacs. Nos résultats indiqueraient qu’une meilleure compréhension des effets des feux pourrait être obtenue en examinant l’incidence des changements touchant les macrophytes après un feu sur d’autres niveaux trophiques. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Allen E.W., Prepas E.E., Gabos S., Strachan W.M., and Zhang W. 2005. Methyl mercury concentrations in macroinvertebrates and fish from burned and undisturbed lakes on the Boreal Plain. Can. J. Fish. Aquat. Sci. 62(9): 1963–1977.
Bayley S.E., Schindler D.W., Beaty K.G., Parker B.R., and Stainton M.P. 1992a. Effects of multiple fires on nutrient yields from streams draining boreal forest and fen watersheds: nitrogen and phosphorus. Can. J. Fish. Aquat. Sci. 49(3): 584–596.
Bayley S.E., Schindler D.W., Parker B.R., Stainton M.P., and Beaty K.G. 1992b. Effects of forest fire and drought on acidity of a base-poor boreal forest stream: similarities between climatic warming and acidic precipitation. Biogeochemistry, 17(3): 191–204.
Bergström A.K., Karlsson J., Karlsson D., and Vrede T. 2018. Contrasting plankton stoichiometry and nutrient regeneration in northern arctic and boreal lakes. Aquat. Sci. 80(2): 1–14.
Bladon K.D., Emelko M.B., Silins U., and Stone M. 2014. Wildfire and the future of water supply. Environ. Sci. Technol. 48(16): 8936–8943.
Bond-Lamberty B., Peckham S.D., Gower S.T., and Ewers B.E. 2009. Effects of fire on regional evapotranspiration in the central Canadian boreal forest. Glob. Chang. Biol. 15(5): 1242–1254.
Borcard, D., Gilley, F., and Legendre, P. 2011. Numerical ecology with R. Springer, New York.
Cairns A. and Yan N. 2009. A review of the influence of low ambient calcium concentrations on freshwater daphniids, gammarids, and crayfish. Environ. Rev. 17: 67–79.
Canadian Forest Service. 2020. Canadian National Fire Database – Agency Fire Data. Available from https://cwfis.cfs.nrcan.gc.ca/ha/nfdb.
Carignan R. and Steedman R.J. 2000. Impacts of major watershed perturbations on aquatic ecosystems. Can. J. Fish. Aquat. Sci. 57(S2): 1–4.
Carignan R., D’Arcy P., and Lamontagne S. 2000. Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes. Can. J. Fish. Aquat. Sci. 57(S2): 105–117.
Carpenter S.R., Gurevitch A., and Adams M.S. 1979. Factors causing elevated biological oxygen demand in the littoral zone of lake Wingra, Wisconsin. Hydrobiologia, 67(1): 3–9.
CCME. 2011. Protocols for water quality sampling in Canada 9.3. Canadian Council for Ministers of the Environment. Available from http://protocols.ccme.ca/download/en/442/.
Chevan A. and Sutherland M. 1991. Hierarchical partitioning. Am. Stat. 45(2): 90–96.
Dalesman S. and Lukowiak K. 2010. Effect of acute exposure to low environmental calcium on respiration and locomotion in Lymnaea stagnalis (L.). J. Exp. Biol. 213(9): 1471–1476.
de Groot W.J., Cantin A.S., Flannigan M.D., Soja A.J., Gowman L.M., and Newbery A. 2013. A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manage. 294: 23–34.
dos Reis Oliveira P.C., Kraak M.H.S., Pena-Ortiz M., van der Geest H.G., and Verdonschot P.F.M. 2020. Responses of macroinvertebrate communities to land use specific sediment food and habitat characteristics in lowland streams. Sci. Total Environ. 703: 1–16.
Eloranta P. 1978. Light penetration in different types of lakes in Central Finland. Holarct. Ecol. 1(4): 362–366.
Ferreiro N., Feijoó C., Giorgi A., and Rosso J. 2014. Macroinvertebrates select complex macrophytes independently of their body size and fish predation risk in a Pampean stream. Hydrobiologia, 740(1): 191–205.
Flannigan M.D., Logan K.A., Amiro B.D., Skinner W.R., and Stocks B.J. 2005. Future area burned in Canada. Clim. Change, 72(1–2): 1–16.
Flannigan M., Stocks B., Turetsky M., and Wotton M. 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biol. 15(3): 549–560.
Flood N. 2013. Seasonal composite landsat TM/ETM+ Images using the medoid (a multi-dimensional median). Remote Sens. 5(12): 6481–6500.
Garcia E. and Carignan R. 1999. Impact of wildfire and clear-cutting in the boreal forest on methyl mercury in zooplankton. Can. J. Fish. Aquat. Sci. 56(2): 339–345.
Garcia E. and Carignan R. 2005. Mercury concentrations in fish from forest harvesting and fire-impacted Canadian Boreal lakes compared using stable isotopes of nitrogen. Environ. Toxicol. Chem. 24(3): 685–693.
Gasith, A., and Hoyer, M.V. 1998. Structuring role of macrophytes in lakes: changing influence along lake size and depth gradients. In The structuring role of submerged macrophytes in lakes. Springer. pp. 381–392.
Gibson C.M., Chasmer L.E., Thompson D.K., Quinton W.L., Flannigan M.D., and Olefeldt D. 2018. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9(1): 3041.
Gillooly J.F. 2000. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22(2): 241–251.
Golder Associates. 2015. Central Mackenzie surface water and groundwater baseline assessment. Report 1: Technical state of knowledge. Available from https://bit.ly/3hkklf7.
Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., and Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202: 18–27.
Gray D.K and Arnott S.E. 2012. The role of dispersal levels, Allee effects and community resistance as zooplankton communities respond to environmental change. J. Appl. Ecol. 49(6): 1216–1224.
Hanes C.C., Wang X., Jain P., Parisien M.A., Little J.M., and Flannigan M.D. 2019. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 49(3): 256–269.
Haney, J.F. 2013. An image-based key to the zooplankton of North America version 5.0. Available from http://cfb.unh.edu/cfbkey/html/.
Heinle D.R. 1969. Temperature and zooplankton. Chesap. Sci. 10: 186–209.
Heiri O., Lotter A.F., and Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25: 101–110.
Holloway J.E., Lewkowicz A.G., Douglas T.A., Li X., Turetsky M.R., Baltzer J.L., and Jin H. 2020. Impact of wildfire on permafrost landscapes: a review of recent advances and future prospects. Permafrost and Periglac Process, 31(3): 371–382.
Irish, R.R. 2000. Landsat 7 automatic cloud cover assessment. Proceedings Volume 4049, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI.
Jalal W., Pinel-Alloul B., and Methot G. 2005. Mid-term study of the ecological impacts of forest fires and timber harvesting on zooplankton communities in lakes of the boreal ecozone. Rev. Sci. Eau, 18: 221–248.
Jeziorski A., Paterson A.M., Watson I., Cumming B.F., and Smol J.P. 2014. The influence of calcium decline and climate change on the cladocerans within low calcium, circumneutral lakes of the Experimental Lakes Area. Hydrobiologia, 722(1): 129–142.
Jones S.E., Zwart J.A., Kelly P.T., and Solomon C.T. 2018. Hydrologic setting constrains lake heterotrophy and terrestrial carbon fate. Limnol. Oceanogr. Lett. 3(3): 256–264.
Jones, F.C., Somers, K.M., Craig, B., and Reynoldson, T.B. 2007. Ontario benthos biomonitoring network: protocol manual. Available from http://www.saugeenconservation.com/download/benthos/2009/OBBN%20Protocol%20Manual.pdf.
Kasischke E.S., Verbyla D.L., Rupp T.S., McGuire A.D., Murphy K.A., Jandt R., et al. 2010. Alaska’s changing fire regime — implications for the vulnerability of its boreal forests. Can. J. For. Res. 40(7): 1313–1324.
Kassambara, A., and Mundt, F. 2019. Factoextra: extract and visualize the results of multivariate data analyses. R package. Available from https://cran.r-project.org/package=factoextra.
Keeley J.E. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildl. Fire, 18(1): 116–126.
Kelly E.N., Schindler D.W., St. Louis V.L., Donald D.B., and Vladicka K.E. 2006. Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. Proc. Natl. Acad. Sci. U.S.A. 103(51): 19380–19385.
Khanna S., Santos M.J., Ustin S.L., and Haverkamp P.J. 2011. An integrated approach to a biophysiologically based classification of floating aquatic macrophytes. Int. J. Remote Sens. 32(4): 1067–1094.
Korosi J.B., Mcdonald J., Coleman K.A., Palmer M.J., Smol J.P., Simpson M.J., and Blais J.M. 2015. Long-term changes in organic matter and mercury transport to lakes in the sporadic discontinuous permafrost zone related to peat subsidence. Limnol. Oceanogr. 60(5): 1550–1561.
Korsman T. and Segerström U. 1998. Forest fire and lake-water acidity in a northern Swedish boreal area: Holocene changes in lake-water quality at Makkassjon. J. Ecol. 86(1): 113–124.
Labaj A.L., Jeziorski A., Kurek J., and Smol J.P. 2014. Long-term trends in cladoceran assemblages related to acidification and subsequent liming of Middle Lake (Sudbury, Canada). Water Air Soil Pollut. 225(1868): 1–9.
Lacoul P. and Freedman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 14(2): 89–136.
Lamontagne S., Carignan R., D’Arcy P., Prairie Y.T., and Paré D. 2000. Element export in runoff from eastern Canadian Boreal Shield drainage basins following forest harvesting and wildfires. Can. J. Fish. Aquat. Sci. 57(S2): 118–128.
Lamontagne S., Donald D.B., and Schindler D.W. 1994. The distribution of four Chaoborus species (Diptera: Chaoboridae) along an elevation gradient in Canadian Rocky Mountain lakes. Can. J. Zool. 72(9): 1531–1537.
Lantz T.C. and Kokelj S.V. 2008. Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophys. Res. Lett. 35(6): 1–5.
Lauridsen T., Pedersen L.J., Jeppesen E., and Sønergaard M. 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18(12): 2283–2294.
Legendre P. and Gallagher E. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2): 271–280.
Legendre P., Oksanen J., and ter Braak C.J.F. 2011. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2(3): 269–277.
Lewis T.L., Lindberg M.S., Schmutz J.A., and Bertram M.R. 2014. Multi-trophic resilience of boreal lake ecosystems to forest fires. Ecology, 95(5): 1253–1263.
Mac Nally R. 2000. Regression and model-building in conservation biology, biogeography and ecology: the distinction between — and reconciliation of — ‘predictive’ and ‘explanatory’ models. Biodivers. Conserv. 9(5): 655–671.
Mac Nally R. 2002. Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers. Conserv. 11(8): 1397–1401.
McDermott, H., Paull, T., and Strachan, S. 2014. CABIN laboratory methods: processing, taxonomy, and quality control of benthic macroinvertebrate samples. Available online at https://mspace.lib.umanitoba.ca/handle/1993/30906. Environment Canada, Ottawa, Ont.
McEachern P., Prepas E.E., Gibson J.J., and Dinsmore W.P. 2000. Forest fire induced impacts on phosphorus, nitrogen, and chlorophyll a concentrations in boreal subarctic lakes of northern Alberta. Can. J. Fish. Aquat. Sci. 57(S2): 73–81.
McEachern P., Prepas E.E., and Planas D. 2002. Phytoplankton in boreal subarctic lakes following enhanced phosphorus loading from forest fire: impacts on species richness, nitrogen and light limitation. Lake Res. Manage. 18(2): 138–148.
Mochnacz, N.J., and Reist, J.D. (Editors). 2007. Biological and habitat data for fish collected during stream surveys in the Sahtu Settlement Region, Northwest Territories, 2006. Canadian Data Report of Fisheries and Aquatic Sciences. Available from http://publications.gc.ca/pub?id=9.563060&sl=0.
Musetta-Lambert J., Kreutzweiser D., and Sibley P. 2019. Influence of wildfire and harvesting on aquatic and terrestrial invertebrate drift patterns in boreal headwater streams. Hydrobiologia, 834(1): 27–45.
Oksanen, J. 2017. Vegan: ecological diversity. R Package. Version 2.4-4. Available from https://cran.r-project.org/web/packages/vegan/index.html.
Olea P.P., Mateo-Tomás P., and de Frutos A. 2010. Estimating and modelling bias of the hierarchical partitioning public-domain software: implications in environmental management and conservation. PLoS ONE, 5(7): e11698.
Oyama Y., Matsushita B., and Fukushima T. 2015. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sens. Environ. 157: 35–47.
Parker, D. 2012. Picture guide to the common aquatic “bugs” of Saskatchewan. Available from http://www.aquatax.ca/BugGuide.html.
Patoine A. 2002. Influence of catchment deforestation by logging and natural forest fires on crustacean community size structure in lakes of the Eastern Boreal Canadian forest. J. Plankton Res. 24(6): 601–616.
Patoine A., Pinel-Alloul B., Prepas E.E., and Carignan R. 2000. Do logging and forest fires influence zooplankton biomass in Canadian Boreal Shield Lakes? Can. J. Fish. Aquat. Sci. 57(S2): 155–164.
Pomeroy, J.W., Granger, R., Pietroniro, A., Toth, B., and Hedstrom, N. 1999. Classification of the boreal forest for hydrological processes. In Proceedings of the Ninth International Boreal Forest Research Association Conference. Edited by S. Woxholtt. pp. 49–59.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., et al. 2018. ArcticDEM. Harvard Dataverse.
Portielje R. and Van Der Molen D.T. 1999. Relationships between eutrophication variables: From nutrient loading to transparency. Hydrobiologia, 408: 375–387.
Proctor, H. 2006. Key to aquatic mites known from Alberta. Illustrated. Unpubl. Key (July). Available online at https://bit.ly/3hgVfO3.
Prowse T.D., Wrona F.J., Reist J.D., Gibson J.J., Hobbie J.E., Lévesque L.M.J., and Vincent W.F. 2006. Climate change effects on hydroecology of arctic freshwater ecosystems. Ambio, 35(7): 347–358.
R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org.
Robinne F.-N., Hallema D.W., Bladon K.D., and Buttle J.M. 2020. Wildfire impacts on hydrologic ecosystem services in North American high-latitude forests: A scoping review. J. Hydrol. 581: 1–33.
Rotvit L. and Jacobsen D. 2014. Egg development of Plecoptera, Ephemeroptera and Odonata along latitudinal gradients. Ecol. Entomol. 39(2): 177–185.
Roy D.P., Wulder M.A., Loveland T.R., Woodcock C.E., Allen R.G., Anderson M.C., et al. 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 145: 154–172.
Schriver P., Bøgestrand J., Jeppesen E., and Søndergaard M. 1995. Impact of submerged macrophytes on fish–zooplankton–phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshw. Biol. 33(2): 255–270.
Scrimgeour G.J., Tonn W.M., Paszkowski C.A., and Goater C. 2001. Benthic macroinvertebrate biomass and wildfires: evidence for enrichment of boreal subarctic lakes. Freshw. Biol. 46(3): 367–378.
Silins U., Bladon K.D., Kelly E.N., Esch E., Spence J.R., Stone M., et al. 2014. Five-year legacy of wildfire and salvage logging impacts on nutrient runoff and aquatic plant, invertebrate, and fish productivity. Ecohydrology, 7(6): 1508–1523.
Stansbury J., Kozimor L., Admiraal D., and Dove E. 2008. Water quality modeling of the effects of macrophytes on dissolved oxygen in a shallow tailwater reservoir. Lake Res. Manage. 24(4): 339–348.
Sterckx S., Knaeps S., Kratzer S., and Ruddick K. 2015. SIMilarity Environment Correction (SIMEC) applied to MERIS data over inland and coastal waters. Remote Sens. Environ. 157: 96–110.
Stocks B.J., Mason J.A., Todd J.B., Bosch E.M., Wotton B.M., Amiro B.D., et al. 2002. Large forest fires in Canada, 1959–1997. J. Geophys. Res. 108: FFR 5-1–FFR 5-12.
Tabak L.M. and Gibbs K.E. 1991. Effects of aluminum, calcium and low pH on egg hatching and nymphal survival of Cloeon triangulifer McDunnough (Ephemeroptera: Baetidae). Hydrobiologia, 218(2): 157–166.
Thompson V.F., Marshall D.L., Reale J.K., and Dahm C.N. 2019. The effects of a catastrophic forest fire on the biomass of submerged stream macrophytes. Aquat. Bot. 152: 36–42.
Thorp, J.H., and Rogers, C.D. (Editors). 2016. Keys to Nearctic Fauna: Thorp and Covich’s Freshwater Invertebrates. Vol. II. 4th ed. Academic Press, London.
US Environmental Protection Agency. 1993. Method 600. Methods for determination of inorganic substances in environmental samples, EPA/600/R-93/100. Available online at https://bit.ly/2DMqxPc.
US Environmental Protection Agency. 2016. Standard operating procedure for zooplankton analysis, LG403, revision 7. Available from https://www.epa.gov/sites/production/files/2017-01/documents/sop-for-zooplankton-analysis-201607-22pp.pdf.
US Geological Survey. 2019. Landsat 8 Surface Reflectance Code (LASRC) Product Guide. (No. LSDS-1368 Version 2.0). Available online at https://www.usgs.gov/media/files/landsat-8-collection-1-land-surface-reflectance-code-product-guide.
Veraverbeke S., Rogers B.M., Goulden M.L., Jandt R.R., Miller C.E., Wiggins E.B., and Randerson J.T. 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change, 7(7): 529–534.
Vermote E., Justice C., Claverie M., and Franch B. 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185: 46–56.
Wagner M.J., Bladon K.D., Silins U., Williams C.H.S., Martens A.M., Boon S., et al. 2014. Catchment-scale stream temperature response to land disturbance by wildfire governed by surface-subsurface energy exchange and atmospheric controls. J. Hydrol. 517: 328–338.
Walsh, C., and Mac Nally, R. 2013. Hier.part: hierarchical partitioning. R package version 1.0-4. Available online at https://cran.r-project.org/web/packages/hier.part/index.html.
Wang M., Son S., Zhang Y., and Shi W. 2013. Remote sensing of water optical property for China’s inland lake Taihu using the SWIR atmospheric correction with 1640 and 2130 nm bands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(6): 2505–2516.
Weed A., Ayres M., and Hicke J. 2013. Consequences of climate change for biotic disturbances. Ecol. Monogr. 83(4): 441–470.
Witty, L. 2004. Practical guide to identifying freshwater crustacean zooplankton. 2nd ed. Cooperative Freshwater Ecology Unit, Sudbury, Ontario, Canada. Available from http://www3.laurentian.ca/livingwithlakes/wp-content/uploads/2012/06/Zooplankton-Guide-to-Taxonomy.pdf.
Yadav S., Yoneda M., Tamura M., Susaki J., Ishikawa K., and Yamashiki Y. 2017. A satellite-based assessment of the distribution and biomass of submerged aquatic vegetation in the optically shallow basin of Lake Biwa. Remote Sens. 9(966): 1–27.
Yang J., Pan S., Dangal S., Zhang B., Wang S., and Tian H. 2017. Continental-scale quantification of post-fire vegetation greenness recovery in temperate and boreal North America. Remote Sens. Environ. 199: 277–290.
Zhang Q. and Chen W. 2007. Fire cycle of the Canada’s boreal region and its potential response to global change. J. For. Res. 18(1): 55–61.

Supplementary Material

Supplementary data (cjfas-2020-0141suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 78Number 3March 2021
Pages: 218 - 231

History

Received: 21 April 2020
Accepted: 13 October 2020
Published online: 20 October 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Thomas J. Pretty
Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada.
Charles-Matthew Chanyi
Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada.
Catherine Kuhn
Department of Environmental and Forest Science, University of Washington, Seattle, Washington, USA.
Derek K. Gray dgray@wlu.ca
Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media