Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Growth during the first summer at sea modulates sex-specific maturation schedule in Atlantic salmon

Publication: Canadian Journal of Fisheries and Aquatic Sciences
19 December 2020

Abstract

Recent decline in abundance of Atlantic salmon (Salmo salar) and concomitant changes in life history may result from a decline in the growth conditions during marine migration. Available literature suggests the existence of a sex-specific reaction norm linking maturation with environmental growth conditions at sea. However, the extent to which this mechanism explains variations in age at maturity remains unclear. Using a historical collection of scales (1987–2017) from the Sélune River, France, we showed that marine growth declined over the first summer and remained stable during the subsequent periods at sea among returning salmon. Results support the hypothesis of a sex-specific probabilistic reaction norm, with individual probability to return after 1 year at sea increasing when growth increases. Females may require higher growth than males to attain their maturation threshold. This mechanism is a good candidate to explain temporal variability in sea-age at return at both the individual and population level in the Sélune population and in many other southern European populations.

Résumé

Les baisses récentes de l’abondance des saumons atlantiques (Salmo salar), ainsi que des changements concomitants du cycle biologique pourraient découler d’une détérioration des conditions de croissance durant la migration en mer. La documentation disponible semble indiquer l’existence d’une norme de réaction dépendant du sexe qui relie la maturation aux conditions ambiantes durant la croissance en mer. La mesure dans laquelle ce mécanisme pourrait expliquer les variations de l’âge à la maturité demeure toutefois incertaine. En utilisant une collection historique (1987–2017) d’écailles provenant de la rivière Sélune (France), nous démontrons que la croissance en mer diminuait durant le premier été, pour ensuite demeurer stable durant les périodes subséquentes en mer chez les saumons de retour à la rivière. Les résultats appuient l’hypothèse d’une norme de réaction probabiliste dépendant du sexe, la probabilité individuelle de retour après 1 an en mer augmentant de concert avec la croissance. Les femelles pourraient nécessiter une croissance plus forte que les mâles pour atteindre leur seuil de maturation. Ce mécanisme est un bon candidat pour expliquer la variabilité temporelle de l’âge en mer au moment du retour tant à l’échelle de l’individu que de la population dans la population de la rivière Sélune et de nombreuses autres populations d’Europe méridionale. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Aas, Ø., Klemetsen, A., Einum, S., and Skurdal, J. 2010. Atlantic salmon ecology. John Wiley & Sons.
Aprahamian M.W., Davidson I.C., and Cove R.J. 2008. Life history changes in Atlantic salmon from the River Dee, Wales. Hydrobiologia, 602(1): 61–78.
Baglinière J.L., Bomassi P., Bousquet B., Chancerel F., De Pontual H., Dumas J., et al. 1985. La détermination de l’âge par scalimétrie chez le saumon atlantique (Salmo salar) dans son aire de répartition méridionale : utilisation pratique et difficultés de la méthode. Bulletin français de la pêche et de la pisciculture 298: 69–105.
Baglinière J.L., Maisse G., and Nihouarn A. 1990. Migratory and reproductive behaviour of female adult Atlantic salmon, Salmo salar L., in a spawning stream. J. Fish Biol. 36(4): 511–520.
Baglinière J.L., Marchand F., and Vauclin V. 2005. Interannual changes in recruitment of the Atlantic salmon (Salmo salar) population in the River Oir (Lower Normandy, France): relationships with spawners and in-stream habitat. ICES J. Mar. Sci. 62(4): 695–707.
Bal G., Rivot E., Baglinière J.L., White J., and Prévost E. 2014. A hierarchical Bayesian model to quantify uncertainty of stream water temperature forecasts. PLoS ONE, 9(12): e115659.
Bal G., Montorio L., Rivot E., Prévost E., Baglinière J.L., and Nevoux M. 2017. Evidence for long-term change in length, mass and migration phenology of anadromous spawners in French Atlantic salmon Salmo salar: changing S. salar size and phenology. J. Fish Biol. 90(6): 2375–2393.
Barbraud C. and Weimerskirch H. 2006. Antarctic birds breed later in response to climate change. Proc. Natl. Acad. Sci. U.S.A, 103(16): 6248–6251.
Barson N.J., Aykanat T., Hindar K., Baranski M., Bolstad G.H., Fiske P., et al. 2015. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature, 528(7582): 405–408.
Beaugrand G. and Reid P.C. 2012. Relationships between North Atlantic salmon, plankton, and hydroclimatic change in the Northeast Atlantic. ICES J. Mar. Sci. 69(9): 1549–1562.
Burnham, K.P., and Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach 2nd ed. Springer-Verlag, New York.
Campbell B., Dickey J.T., and Swanson P. 2003. Endocrine changes during onset of puberty in male spring chinook salmon, Oncorhynchus tshawytscha. Biol. Reprod. 69(6): 2109–2117.
Capuzzo E., Lynam C.P., Barry J., Stephens D., Forster R.M., Greenwood N., et al. 2018. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Glob. Chang. Biol. 24(1): e352–e364.
Carscadden J.E., Frank K.T., and Leggett W.C. 2001. Ecosystem changes and the effects on capelin (Mallotus villosus), a major forage species. Can. J. Fish. Aquat. Sci. 58(1): 73–85.
Chaparro‐Pedraza P.C. and Roos A.M.D. 2019. Environmental change effects on life-history traits and population dynamics of anadromous fishes. J. Anim. Ecol. 88(8): 1178–1190.
Chaput G. 2012. Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality. ICES J. Mar. Sci. 69(9): 1538–1548.
Craven P. and Wahba G. 1978. Smoothing noisy data with spline functions. Numer. Math. 31(4): 377–403.
Czorlich Y., Aykanat T., Erkinaro J., Orell P., and Primmer C.R. 2018. Rapid sex-specific evolution of age at maturity is shaped by genetic architecture in Atlantic salmon. Nat. Ecol. Evol. 2(11): 1800–1807.
Dadswell M.J., Spares A.D., Reader J.M., and Stokesbury M.J.W. 2010. The North Atlantic subpolar gyre and the marine migration of Atlantic salmon Salmo salar: the ‘Merry-Go-Round’ hypothesis. J. Fish Biol. 77(3): 435–467.
Dahl, K. 1910. The age and growth of salmon and trout in Norway as shown by their scales. Salmon and Trout Assoc, London. Available at https://www.biodiversitylibrary.org/bibliography/27730.
Dieckmann U. and Heino M. 2007. Probabilistic maturation reaction norms: their history, strengths, and limitations. Mar. Ecol. Prog. Ser. 335: 253–269.
Erkinaro J., Czorlich Y., Orell P., Kuusela J., Falkegård M., Länsman M., et al. 2019. Life history variation across four decades in a diverse population complex of Atlantic salmon in a large subarctic river. Can. J. Fish. Aquat. Sci. 76(1): 42–55.
Fenkes M., Shiels H.A., Fitzpatrick J.L., and Nudds R.L. 2016. The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 193: 11–21.
Fleming I.A. 1996. Reproductive strategies of Atlantic salmon: ecology and evolution. Rev. Fish Biol. Fish. 6(4): 379–416.
Fleming I.A. 1998. Pattern and variability in the breeding system of Atlantic salmon (Salmo salar), with comparisons to other salmonids. Can. J. Fish. Aquat. Sci. 55(S1): 59–76.
Forget G., Baglinière J.-L., Marchand F., Richard A., and Nevoux M. 2018. A new method to estimate habitat potential for Atlantic salmon (Salmo salar): predicting the influence of dam removal on the Sélune River (France) as a case study. ICES J. Mar. Sci. 75(6): 2172–2181.
Frainer A., Primicerio R., Kortsch S., Aune M., Dolgov A.V., Fossheim M., and Aschan M.M. 2017. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. U.S.A, 114(46): 12202–12207.
Francis R.I.C.C. 1990. Back-calculation of fish length: a critical review. J. Fish Biol. 36(6): 883–902.
Friedland K.D. 1998. Ocean climate influences on critical Atlantic salmon (Salmo salar) life history events. Can. J. Fish. Aquat. Sci. 55(S1): 119–130.
Friedland K.D. and Haas R.E. 1996. Marine post-smolt growth and age at maturity of Atlantic salmon. J. Fish Biol. 48(1): 1–15.
Friedland K.D. and Reddin D.G. 2000. Growth patterns of Labrador Sea Atlantic salmon postsmolts and the temporal scale of recruitment synchrony for North American salmon stocks. Can. J. Fish. Aquat. Sci. 57(6): 1181–1189.
Friedland K.D., Haas R.E., and Sheehan T.F. 1997. Post-smolt growth, maturation, and survival of two stocks of Atlantic salmon. Oceanographic Lit. Rev. 7(44): 751.
Friedland K.D., Chaput G., and MacLean J.C. 2005. The emerging role of climate in post-smolt growth of Atlantic salmon. ICES J. Mar. Sci. 62(7): 1338–1349.
Friedland K.D., MacLean J.C., Hansen L.P., Peyronnet A.J., Karlsson L., Reddin D.G., et al. 2009. The recruitment of Atlantic salmon in Europe. ICES J. Mar. Sci. 66(2): 289–304.
Friedland K.D., Mouw C.B., Asch R.G., Ferreira A.S.A., Henson S., Hyde K.J.W., et al. 2018. Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales. Glob. Ecol. Biogeogr. 27(5): 551–569.
Gregory S.D., Armstrong J.D., and Britton J.R. 2018. Is bigger really better? Towards improved models for testing how Atlantic salmon Salmo salar smolt size affects marine survival. J. Fish Biol. 92(3): 579–592.
Gregory S.D., Ibbotson A.T., Riley W.D., Nevoux M., Lauridsen R.B., Russell I.C., et al. 2019. Atlantic salmon return rate increases with smolt length. ICES J. Mar. Sci. 76: 1702–1712.
Hansen L.P. and Quinn T.P. 1998. The marine phase of the Atlantic salmon (Salmo salar) life cycle, with comparisons to Pacific salmon. Can. J. Fish. Aquat. Sci. 55(S1): 104–118.
Hanson N., Ounsley J., Burton T., Auer S., Hunt J.H., Shaw B., et al. 2020. Hierarchical analysis of wild Atlantic salmon (Salmo salar) fecundity in relation to body size and developmental traits. J. Fish Biol. 96(2): 316–326.
Haugland M., Holst J., Holm M., and Hansen L. 2006. Feeding of Atlantic salmon (Salmo salar L.) post-smolts in the Northeast Atlantic. ICES J. Mar. Sci. 63(8): 1488–1500.
Heidarsson T., Antonsson T., and Snorrason S.S. 2006. The relationship between body and scale growth proportions and validation of two back-calculation methods using individually tagged and recaptured wild Atlantic salmon. Trans. Am. Fish. Soc. 135(5): 1156–1164.
Hixon M.A., Johnson D.W., and Sogard S.M. 2014. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J. Mar. Sci. 71(8): 2171–2185.
Hoegh-Guldberg O. and Bruno J.F. 2010. The impact of climate change on the World’s Marine ecosystems. Science, 328(5985): 1523–1528.
Hunt S.M.V., Simpson T.H., and Wright R.S. 1982. Seasonal changes in the levels of 11-oxotestosterone and testosterone in the serum of male salmon, Salmo salar L., and their relationship to growth and maturation cycle. J. Fish Biol. 20(1): 105–119.
Hurvich C.M. and Tsai C.-L. 1989. Regression and time series model selection in small samples. Biometrika, 76: 297–307.
Hutchings J.A. and Jones M.E.B. 1998. Life history variation and growth rate thresholds for maturity in Atlantic salmon, Salmo salar. Can. J. Fish. Aquat. Sci. 55(S1): 22–47.
ICES. 1984. Report of the Atlantic salmon scale reading workshop. Aberdeen, Scotland, 23–28 April 1984. Copenhagen.
IPCC. 2019. IPCC special report on the ocean and cryosphere in a changing climate. Intergovernmental Panel on Climate Change. Available from https://www.ipcc.ch/srocc/.
Ishida Y., Ito S., Kaeriyama M., McKinnell S., and Nagasawa K. 1993. Recent changes in age and size of chum salmon (Oncorhynchus keta) in the North Pacific Ocean and Possible Causes. Can. J. Fish. Aquat. Sci. 50(2): 290–295.
Jacobsen J.A., Lund R.A., Hansen L.P., and O’Maoileidigh N. 2001. Seasonal differences in the origin of Atlantic salmon (Salmo salar L.) in the Norwegian Sea based on estimates from age structures and tag recaptures. Fish. Res. 52(3): 169–177.
Jonsson, B., and Jonsson, N. 2011. Climatic effects on Atlantic salmon and brown trout. In Ecology of Atlantic Salmon and Brown Trout. Springer Netherlands, Dordrecht. pp. 473–515.
Jonsson B., Jonsson N., and Albretsen J. 2016. Environmental change influences the life history of salmon Salmo salar in the North Atlantic Ocean. J. Fish Biol. 88(2): 618–637.
Juanes F., Gephard S., and Beland K.F. 2004. Long-term changes in migration timing of adult Atlantic salmon (Salmo salar) at the southern edge of the species distribution. Can. J. Fish. Aquat. Sci. 61(12): 2392–2400.
Kirkpatrick M. and Heckman N. 1989. A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. J. Math. Biol. 27(4): 429–450.
Kuparinen A., Garcia de Leaniz C., Consuegra S., and Merilä J. 2009. Growth-history perspective on the decreasing age and size at maturation of exploited Atlantic salmon. Mar. Ecol. Prog. Ser. 376: 245–252.
Lee R.M. 1920. Age and growth determination in fishes. Nature, 106(2654): 49–51.
Lennox R.J., Aarestrup K., Cooke S.J., Cowley P.D., Deng Z.D., Fisk A.T., et al. 2017. Envisioning the future of aquatic animal tracking: technology, science, and application. BioScience, 67(10): 884–896.
Limburg K.E. and Waldman J.R. 2009. Dramatic declines in North Atlantic diadromous fishes. BioScience, 59(11): 955–965.
Mangel M. and Satterthwaite W.H. 2008. Combining proximate and ultimate approaches to understand life history variation in salmonids with application to fisheries, conservation, an aquaculture. Bull. Mar. Sci. 83(1): 24.
Marchand, F., Aymes, J.-C., Gueraud, F., Guillard, J., Goulon, C., Hamelet, V., et al. 2019. Colisa, the collection of ichthyological samples.
McCarthy J.L., Friedland K.D., and Hansen L.P. 2008. Monthly indices of the post-smolt growth of Atlantic salmon from the Drammen River, Norway. J. Fish Biol. 72(7): 1572–1588.
McCullagh, P., and Nelder, J.A. 1989. Generalized linear models (2nd Edition). CRC Press.
Mills, D. 1989. Ecology and management of Atlantic salmon. Springer Science & Business Media.
Mills K.E., Pershing A.J., Sheehan T.F., and Mountain D. 2013. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations. Glob. Chang. Biol. 19(10): 3046–3061.
Oke K.B., Cunningham C.J., Westley P.A.H., Baskett M.L., Carlson S.M., Clark J., et al. 2020. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11(1): 4155.
Olmos M., Massiot-Granier F., Prévost E., Chaput G., Bradbury I.R., Nevoux M., and Rivot E. 2019. Evidence for spatial coherence in time trends of marine life history traits of Atlantic salmon in the North Atlantic. Fish Fish. 20(2): 322–342.
Olmos M., Payne M.R., Nevoux M., Prévost E., Chaput G., Du Pontavice H., et al. 2020. Spatial synchrony in the response of a long range migratory species (Salmo salar) to climate change in the North Atlantic Ocean. Glob. Chang. Biol. 26: 1319–1337.
Ombredane, D., and Baglinière, J.L. 1992. Les écailles et leurs utilisations en écologie halieutique. In Tissus durs et âge individuel des vertébrés. Colloque national, Bondy. Colloques et Séminaires ORSTOM-INRA, Paris. pp. 151–192.
Otero J., Jensen A.J., L'Abée-Lund J.H., Stenseth N.C., Storvik G.O., and Vøllestad L.A. 2012. Contemporary ocean warming and freshwater conditions are related to later sea age at maturity in Atlantic salmon spawning in Norwegian rivers. Ecol. Evol. 2(9): 2192–2203.
Otero J., L'Abée-Lund J.H., Castro-Santos T., Leonardsson K., Storvik G.O., Jonsson B., et al. 2014. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob. Chang. Biol. 20(1): 61–75.
Renkawitz M., Sheehan T., Dixon H., and Nygaard R. 2015. Changing trophic structure and energy dynamics in the Northwest Atlantic: implications for Atlantic salmon feeding at West Greenland. Mar. Ecol. Prog. Ser. 538: 197–211.
Reznick D.A., Bryga H., and Endler J.A. 1990. Experimentally induced life-history evolution in a natural population. Nature, 346(6282): 357–359.
Rowe D.K. and Thorpe J.E. 1990. Differences in growth between maturing and non-maturing male Atlantic salmon, Salmo salar L., parr. J. Fish Biol. 36(5): 643–658.
Sandvik H., Erikstad K.E., Barrett R.T., and Yoccoz N.G. 2005. The effect of climate on adult survival in five species of North Atlantic seabirds. J Anim. Ecol. 74(5): 817–831.
Shearer, M.W.M. 1992. Atlantic salmon scale reading guidelines (No. 188). International Council for the Exploration of the Sea. p. 50.
Shearer K.D. and Swanson P. 2000. The effect of whole body lipid on early sexual maturation of 1+ age male chinook salmon (Oncorhynchus tshawytscha). Aquaculture, 190(3): 343–367.
Siegel J., Adkison M., and McPhee M. 2018. Changing maturation reaction norms and the effects of growth history in Alaskan Chinook salmon. Mar. Ecol. Prog. Ser. 595: 187–202.
Silverstein J.T., Shimma H., and Ogata H. 1997. Early maturity in amago salmon (Oncorhynchus masu ishikawai): an association with energy storage. Can. J. Fish. Aquat. Sci. 54: 444–451.
Silverstein J.T., Shearer K.D., Dickhoff W.W., and Plisetskaya E.M. 1998. Effects of growth and fatness on sexual development of chinook salmon (Oncorhynchus tshawytscha) parr. Can. J. Fish. Aquat. Sci. 55(11): 2376–2382.
Stearns S.C. 1977. The Evolution of Life History Traits: A Critique of the Theory and a Review of the Data. Ann. Rev. Ecol. System. 8(1): 145–171.
Stearns S.C. and Koella J.C. 1986. The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution, 40(5): 893–913.,.
Thomas K., Hansen T., Brophy D., Maoiléidigh N.Ó., and Fjelldal P.G. 2019. Experimental investigation of the effects of temperature and feeding regime on scale growth in Atlantic salmon Salmo salar post-smolts. J. Fish Biol. 94(6): 896–908.
Thorpe J. 2007. Maturation responses of salmonids to changing developmental opportunities. Mar. Ecol. Prog. Ser. 335: 285–288.
Thorpe J.E., Mangel M., Metcalfe N.B., and Huntingford F.A. 1998. Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L. Evol. Ecol. 12(5): 581–599.
Todd C.D., Hughes S.L., Marshall C.T., MacLEAN J.C., Lonergan M.E., and Biuw E.M. 2008. Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmon. Glob. Chang Biol. 14(5): 958–970.
Todd C.D., Friedland K.D., MacLean J.C., Whyte B.D., Russell I.C., Lonergan M.E., and Morrissey M.B. 2012. Phenological and phenotypic changes in Atlantic salmon populations in response to a changing climate. ICES J. Mar. Sci. 69(9): 1686–1698.
Todd C.D., Hanson N.N., Boehme L., Revie C.W., and Marques A.R. 2020. Variation in post‐smolt growth pattern of wild one sea‐winter salmon (Salmo salar L.), and its linkage to surface warming in the eastern North Atlantic Ocean. J. Fish Biol. 98: 6–16.
Vargas‐Chacoff L., Regish A.M., Weinstock A., and McCormick S.D. 2018. Effects of elevated temperature on osmoregulation and stress responses in Atlantic salmon Salmo salar smolts in fresh water and seawater. J. Fish Biol. 93(3): 550–559.
Véron M., Duhamel E., Bertignac M., Pawlowski L., and Huret M. 2020. Major changes in sardine growth and body condition in the Bay of Biscay between 2003 and 2016: Temporal trends and drivers. Prog. Oceanogr. 182: 102274.
Via S. and Lande R. 1985. Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution, 39(3): 505–522.
Wood, S.N. 2017. Generalized additive models: an introduction with R (2nd edition). CRC Press/Taylor & Francis Group, Boca Raton.

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 78Number 6June 2021
Pages: 659 - 669

History

Received: 30 June 2020
Accepted: 12 December 2020
Accepted manuscript online: 19 December 2020
Version of record online: 19 December 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Cécile Tréhin [email protected]
UMR ESE Ecology and Ecosystem Health, Institut Agro, INRAE, 35042 Rennes, France.
Etienne Rivot
UMR ESE Ecology and Ecosystem Health, Institut Agro, INRAE, 35042 Rennes, France.
MIAME, Management of Diadromous Fishes in their Environment, OFB, INRAE, Institut Agro, UPPA-E2S.
Ludivine Lamireau
INRAE, pôle OFB–INRAE–Institut Agro–UPPA MIAME – Management of Diadromous Fish in their Environment, U3E, F-35042, Rennes, France.
Lisa Meslier
UMR ESE Ecology and Ecosystem Health, Institut Agro, INRAE, 35042 Rennes, France.
Anne-Laure Besnard
UMR ESE Ecology and Ecosystem Health, Institut Agro, INRAE, 35042 Rennes, France.
Stephen D. Gregory
Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, FBA River Laboratory, Wareham, Dorset, BH20 6BB, UK.
Marie Nevoux
UMR ESE Ecology and Ecosystem Health, Institut Agro, INRAE, 35042 Rennes, France.
MIAME, Management of Diadromous Fishes in their Environment, OFB, INRAE, Institut Agro, UPPA-E2S.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Using scale-derived estimates of body size in analyses of Atlantic salmon life-history variation: a cautionary note

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media