Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

The interactive effects of stream temperature, stream size, and non-native species on Yellowstone cutthroat trout

Publication: Canadian Journal of Fisheries and Aquatic Sciences
14 February 2021

Abstract

Climate change and non-native species are considered two of the biggest threats to native salmonids in North America. We evaluated how non-native salmonids and stream temperature and discharge were associated with Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) distribution, abundance, and body size to gain a more complete understanding of the existing threats to native populations. Allopatric Yellowstone cutthroat trout were distributed across a wide range of average August temperatures (3.2 to 17.7 °C), but occurrence significantly declined at colder temperatures (<10 °C) with increasing numbers of non-natives. At warmer temperatures, occurrence remained high, despite sympatry with non-natives. Yellowstone cutthroat trout relative abundance was significantly reduced with increasing abundance of non-natives, with the greatest impacts at colder temperatures. Body sizes of large Yellowstone cutthroat trout (90th percentile) significantly increased with warming temperatures and larger stream size, highlighting the importance of access to these more productive stream segments. Considering multiple population-level attributes demonstrates the complexities of how native salmonids (such as Yellowstone cutthroat trout) are likely to be affected by shifting climates.

Résumé

Les changements climatiques et les espèces non indigènes sont considérés comme constituant deux des plus grandes menaces pour les salmonidés indigènes en Amérique du Nord. Nous avons évalué l’association entre les salmonidés non indigènes et la température et le débit des cours d’eau, d’une part, et la répartition, l’abondance et la taille du corps des truites fardées de Yellowstone (Oncorhynchus clarkii bouvieri), d’autre part, afin d’en arriver à une compréhension plus complète des menaces existantes pour les populations indigènes. Des truites fardées de Yellowstone allopatriques sont réparties sur une grande fourchette de températures moyennes en août (de 3,2 à 17,7 °C), mais leur présence diminue significativement à plus basses températures (<10 °C), le nombre de salmonidés non indigènes augmentant parallèlement. À des températures plus élevées, leur présence demeure élevée, malgré la sympatrie avec des salmonidés non indigènes. L’abondance relative des truites fardées de Yellowstone diminue significativement quand l’abondance des salmonidés non indigènes augmente, les plus grands impacts se produisant à plus basses températures. La taille du corps des grandes truites fardées de Yellowstone (90e percentile) augmente significativement avec l’augmentation des températures et de la taille du cours d’eau, ce qui souligne l’importance de l’accès à ces tronçons plus productifs. La considération de plusieurs attributs à l’échelle de la population fait ressortir les complexités de l’incidence probable de climats changeants sur les salmonidés indigènes (tels que la truite fardée de Yellowstone). [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Adams, S.B. 1999. Mechanisms limiting a vertebrate invasion: Brook trout in mountain streams of the northwestern United States of America. Graduate student theses, dissertations, & professional papers, University of Montana, Missoula, Montana.
Adams S.B., Frissell C.A., and Rieman B.E. 2002. Changes in distribution of nonnative brook trout in an Idaho drainage over two decades. Trans. Am. Fish. Soc. 131(3): 561–568.
Al-Chokhachy R., Budy P., and Conner M. 2009. Detecting declines in the abundance of a bull trout (Salvelinus confluentus) population: understanding the accuracy, precision, and costs of our efforts. Can. J. Fish. Aquat. Sci. 66(4): 649–658.
Al-Chokhachy R., Alder J., Hostetler S., Gresswell R., and Shepard B. 2013. Thermal controls of Yellowstone cutthroat trout and invasive fishes under climate change. Glob. Change Biol. 19(10): 3069–3081.
Al-Chokhachy R., Shepard B.B., Burckhardt J., Garren D., Opitz S., Koel T.M., et al. 2018. A portfolio framework for prioritizing conservation efforts of Yellowstone cutthroat trout populations. Fisheries, 43: 485–496.
Allendorf F.W. and Leary R.F. 1988. Conservation and distribution of genetic variation in a polytypic species, the cutthroat trout. Conserv. Biol. 2: 170–184.
Almodovar A., Nicola G.G., Ayllon D., and Elvira B. 2012. Global warming threatens the persistence of Mediterranean brown trout. Glob. Change Biol. 18(5): 1549–1560.
Armstrong J.B., Schindler D.E., Ruff C.P., Brooks G.T., Bentley K.E., and Torgersen C.E. 2013. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources. Ecology, 94(9): 2066–2075.
Armstrong J.D. 2005. Spatial variation in population dynamics of juvenile Atlantic salmon: implications for conservation and management. J. Fish Biol. 67(sB): 35–52.
Ayllón D., Railsback S.F., Harvey B.C., García Quirós I., Nicola G.G., Elvira B., and Almodóvar A. 2019. Mechanistic simulations predict that thermal and hydrological effects of climate change on Mediterranean trout cannot be offset by adaptive behaviour, evolution, and increased food production. Sci. Total Environ. 693: 133648.
Bateman D.S., Gresswell R.E., and Torgersen C.E. 2005. Evaluating single-pass catch as a tool for identifying spatial pattern in fish distribution. J. Freshw. Ecol. 20(2): 335–345.
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singmann, H., et al. 2018. Package ‘lme4’, linear mixed-effects modles using ‘eigen’ and S4. CRAN.
Bear E.A., McMahon T.E., and Zale A.V. 2007. Comparative thermal requirements of Westslope Cutthroat Trout and Rainbow Trout: Implications for species interactions and development of thermal protection standards. Trans. Am. Fish. Soc. 136(4): 1113–1121.
Benjamin J.R. and Baxter C.V. 2012. Is a trout a trout? A range-wide comparison shows nonnative brook trout exhibit greater density, biomass, and production than native inland cutthroat trout. Biol. Invasions, 14(9): 1865–1879.
Brownscombe J.W., Bower S.D., Bowden W., Nowell L., Midwood J.D., Johnson N., and Cooke S.J. 2014. Canadian recreational fisheries: 35 years of social, biological, and economic dynamics from a national survey. Fisheries, 39(6): 251–260.
Budy, P., and Gaeta, J.W. 2018. Brown trout as an invader: a synthesis of problems and perspectives in North America. In Brown Trout: Biology, Ecology and Management. Edited by J. Lobon-Cervia and N. Sanz. John Wiley & Sons, Inc., Hoboken, N.J. pp. 523–543.
Budy P., Thompson P.D., McKell M.D., Thiede G.P., Walsworth T.E., and Conner M.M. 2020. A multifaceted reconstruction of the population structure and life history expressions of a remnant metapopulation of bonneville cutthroat trout: implications for maintaining intermittent connectivity. Trans. Am. Fish. Soc. 149(4): 443–461.
Burnham, K.P., and Anderson, D.R. 2002. Model selection and multimodel inference. Springer-Verlag, New York.
Cade B.S. and Noon B.R. 2003. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1(8): 412–420.
Campbell M.R., Dillon J., and Powell M.S. 2002. Hybridization and introgression in a managed, native population of Yellowstone cutthroat trout: genetic detection and management implications. Trans. Am. Fish. Soc. 131(3): 364–375.
Clews E., Durance I., Vaughan I.P., and Ormerod S.J. 2010. Juvenile salmonid populations in a temperate river system track synoptic trends in climate. Glob. Change Biol. 16(12): 3271–3283.
Coleman M.A. and Fausch K.D. 2007. Cold summer temperature limits recruitment of age-0 cutthroat trout in high-elevation Colorado streams. Trans. Am. Fish. Soc. 136(5): 1231–1244.
Colyer, R. 2006. Upper Teton River tributary trout population assessment. Friends of the Teton River, Driggs, Id.
Comte L., Buisson L., Daufresne M., and Grenouillet G. 2013. Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshw. Biol. 58(4): 625–639.
Cramer J.S. 1999. Predictive performance of the binary logit model in unbalanced samples. J. R. Stat. Soc. Ser. D-Stat. 48: 85–94.
Crozier L.G., Hendry A.P., Lawson P.W., Quinn T.P., Mantua N.J., Battin J., et al. 2008. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evol. Appl. 1(2): 252–270.
De Staso J. and Rahel F.J. 1994. Influence of water temperature on interactions between juvenile Colorado river cutthroat trout and brook trout in a laboratory stream. Trans. Am. Fish. Soc. 123(3): 289–297.
Dunham J.B. and Rieman B.E. 1999. Metapopulation structure of bull trout: Influences of physical, biotic, and geometrical landscape characteristics. Ecol. Appl. 9(2): 642–655.
Dunham J.B., Adams S.B., Schroeter R.E., and Novinger D.C. 2002. Alien invasions in aquatic ecosystems: toward an understanding of brook trout invasions and potential impacts on inland cutthroat trout in western North America. Rev. Fish Biol. Fish. 12(4): 373–391.
Eliason E.J., Clark T.D., Hague M.J., Hanson L.M., Gallagher Z.S., Jeffries K.M., et al. 2011. Differences in thermal tolerance among sockeye salmon populations. Science, 332(6025): 109–112.
Endicott, C., Nelson, L., Opitz, S., Peterson, A., Burckhardt, J., Yekel, S., et al. 2016. Range-wide status assessment for Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri): 2012. Cutthroat Trout Interagency Coordination Group, Helena, Mont.
Fasioloa M., Wood S.N., Zaffran M., Nedellec R., and Goude Y. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. In press.
Fausch K.D., Nakano S., and Ishigaki K. 1994. Distribution of 2 congeneric charrs in streams of Hokkaido Island Japan — considering multiple factors across scales. Oecologia, 100(1–2): 1–12.
Franco E.A.D. and Budy P. 2005. Effects of biotic and abiotic factors on the distribution of trout and salmon along a longitudinal stream gradient. Environ. Biol. Fish. 72(4): 379–391.
Gresswell R.E. 2011. Biology, status, and management of the Yellowstone cutthroat trout. N. Am. J. Fish. Manage. 31(5): 782–812.
Gunnell K., Tada M.K., Hawthorne F.A., Keeley E.R., and Ptacek M.B. 2008. Geographic patterns of introgressive hybridization between native Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and introduced rainbow trout (O. mykiss) in the South Fork of the Snake River watershed, Idaho. Conserv. Genet. 9(1): 49–64.
Hilderbrand R.H. and Kershner J.L. 2004. Influence of habitat type on food supply, selectivity, and diet overlap of Bonneville cutthroat trout and nonnative brook trout in Beaver Creek, Idaho. N. Am. J. Fish. Manage. 24(1): 33–40.
Hitt N.P., Snook E.L., and Massie D.L. 2017. Brook trout use of thermal refugia and foraging habitat influenced by brown trout. Can. J. Fish. Aquat. Sci. 74(3): 406–418.
Hodge B.W., Battige K.D., and Rogers K.B. 2017. Seasonal and temperature-related movement of Colorado River cutthroat trout in a low-elevation, Rocky Mountain stream. Ecol. Evol. 7(7): 2346–2356.
Hughes R.M. 2015. Recreational fisheries in the U.S.A.: economics, management strategies, and ecological threats. Fish. Sci. 81: 1–9.
Huntsman B.M., Petty J.T., Sharma S., and Merriam E.R. 2016. More than a corridor: use of a main stem stream as supplemental foraging habitat by a brook trout metapopulation. Oecologia, 182(2): 463–473.
Huntsman B.M., Martin R.W., and Patten K.A. 2018. Effects of temperature and spatial scale on Rio Grande cutthroat trout growth and abundance. Trans. Am. Fish. Soc. 147(3): 480–496.
Huntsman B.M., Lynch A.J., Caldwell C.A., and Abadi F. 2021. Intrinsic and extrinsic drivers of life-history variability for a south-western cutthroat trout. Ecol. Freshw. Fish, 30: 100–114.
Isaak D.J. and Hubert W.A. 2004. Nonlinear response of trout abundance to summer stream temperatures across a thermally diverse montane landscape. Trans. Am. Fish. Soc. 133(5): 1254–1259.
Isaak D.J., Luce C.H., Rieman B.E., Nagel D.E., Peterson E.E., Horan D.L., et al. 2010. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. Ecol. Appl. 20(5): 1350–1371.
Isaak D.J., Wollrab S., Horan D., and Chandler G. 2012. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change, 113(2): 499–524.
Isaak D.J., Young M.K., Nagel D.E., Horan D.L., and Groce M.C. 2015. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 21(7): 2540–2553.
Isaak D.J., Wenger S.J., and Young M.K. 2017a. Big biology meets microclimatology: defining thermal niches of ectotherms at landscape scales for conservation planning. Ecol. Appl. 27(3): 977–990.
Isaak D.J., Wenger S.J., Peterson E.E., Ver Hoef J.M., Nagel D.E., Luce C.H., et al. 2017b. The NorWeST summer stream temperature model and scenaros for the western U.S.: a crowd-sourced database and new geospatial dools foster a user community and predict broad climate warming of rivers and streams. Water Resour. Res. 53: 9181–9205.
Jenkins A.R. and Keeley E.R. 2010. Bioenergetic assessment of habitat quality for stream-dwelling cutthroat trout (Oncorhynchus clarkii bouvieri) with implications for climate change and nutrient supplementation. Can. J. Fish. Aquat. Sci. 67(2): 371–385.
Jones L.A., Muhlfeld C.C., Marshall L.A., McGlynn B.L., and Kershner J.L. 2014. Estimating thermal regimes of bull brout and assessing the potential effects of climate warming on critical habitats. River Res. Appl. 30: 204–216.
Jonsson B. and Jonsson N. 2009. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J. Fish Biol. 75(10): 2381–2447.
Kennedy B.M., Peterson D.P., and Fausch K.D. 2003. Different life histories of brook trout populations invading mid-elevation and high-elevation cutthroat trout streams in Colorado. West. N. Am. Nat. 63: 215–223.
Kerkvliet J. and Nowell C. 2000. Tools for recreation management in parks: the case of the greater Yellowstone’s blue-ribbon fishery. Ecol. Econ. 34(1): 89–100.
Kocovsky P.M. and Carline R.F. 2006. Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams. Trans. Am. Fish. Soc. 135(1): 76–88.
Koel T.M., Bigelow P.E., Doepke P.D., Ertel B.D., and Mahony D.L. 2005. Nonnative lake trout result in Yellowstone cutthroat trout decline and impacts to bears and anglers. Fisheries, 30: 10–19.
Kovach R.P., Al-Chokhachy R., and Stephens T. 2018. Proactive rainbow trout suppression preserves Yellowstone Cutthroat Trout stronghold in the upper Snake River basin. N. Am. J. Fish. Manage. 38: 811–819.
Kovach R.P., Muhlfeld C.C., Al-Chokhachy R., Dunham J., Letcher B.H., and Kershner J.L. 2016. Impacts of climattic variation on trout: a global synthesis and path forward. Rev. Fish Biol. Fish. 26: 135–151.
Kruse C.G., Hubert W.A., and Rahel F.J. 1998. Single-pass electrofishing predicts trout abundance in mountain streams with sparse habitat. N. Am. J. Fish. Manage. 18: 940–946.
Luce C.H. and Holden Z.A. 2009. Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophys. Res. Lett. 36: L16401.
McCulloch, C.E., and Neuhaus, J.M. 1989. Generalized, linear, and mixed models. 2nd ed. John Wiley & Sons, New York.
McHugh P. and Budy P. 2005. An experimental evaluation of competitive and thermal effects on brown trout (Salmo trutta) and Bonneville cutthroat trout (Oncorhynchus clarkii utah) performance along an altitudinal gradient. Can. J. Fish. Aquat. Sci. 62(12): 2784–2795.
McMahon T.E., Zale A.V., Barrows F.T., Selong J.H., and Danehy R.J. 2007. Temperature and Competition between Bull Trout and Brook Trout: A Test of the Elevation Refuge Hypothesis. Trans. Am. Fish. Soc. 136(5): 1313–1326.
Meyer K.A., Schill D.J., Elle F.S., and Lamansky J.A. 2003. Reproductive demographics and factors that influence length at sexual maturity of Yellowstone cutthroat trout in Idaho. Trans. Am. Fish. Soc. 132(2): 183–195.
Meyer K.A., Elle F.S., and Lamansky J.A. 2009. Environmental factors related to the distribution, abundance, and life history characteristics of mountain whitefish in Idaho. N. Am. J. Fish. Manage. 29(3): 753–767.
Meyer K.A., Kennedy P., High B., and Campbell M.R. 2017. Distinguishing between Yellowstone cutthroat trout, rainbow trout, and hybrids by use of phenotypic characteristics. N. Am. J. Fish. Manage. 37: 456–466.
Morita K. and Yokota A. 2002. Population viability of stream-resident salmonids after habitat fragmentation: a case study with white-spotted charr (Salvelinus leucomaenis) by an individual based model. Ecol. Model. 155(1): 85–94.
Muhlfeld C.C., Kalinowski S.T., McMahon T.E., Taper M.L., Painter S., Leary R.F., and Allendorf F.W. 2009. Hybridization rapidly reduces fitness of a native trout in the wild. Biol. Lett. 5(3): 328–331.
Muhlfeld C.C., Kovach R.P., Jones L.A., Al-Chokhachy R., Boyer M.C., Leary R.F., et al. 2014. Invasive hybridization in a threatened species is accelerated by climate change. Nat. Clim. Change, 4(7): 620–624.
Muhlfeld C.C., Kovach R.P., Al-Chokhachy R., Amish S.J., Kershner J.L., Leary R.F., et al. 2017. Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout. Glob. Change Biol. 23: 4663–4674.
Nelson L., McMahon T.E., and Thurow R.F. 2002. Decline of the migratory form in bull charr, Salvelinus confluentus, and implications for conservation. Environ. Biol. Fish. 64: 321–332.
Penaluna B.E., Abadia-Cardoso A., Dunham J.B., Garcia-De Leon F.J., Gresswell R.E., Luna A.R., et al. 2016. Conservation of Native Pacific Trout Diversity in Western North America. Fisheries, 41(6): 286–300.
Peterson D.P. and Fausch K.D. 2003. Upstream movement by nonnative brook trout (Salvelinus fontinalis) promotes invasion of native cutthroat trout (Oncorhynchus clarki) habitat. Can. J. Fish. Aquat. Sci. 60(12): 1502–1516.
Peterson D.P., Fausch K.D., and White G.C. 2004. Population ecology of an invasion: Effects of brook trout on native cutthroat trout. Ecol. Appl. 14(3): 754–772.
Peterson D.P., Rieman B.E., Dunham J.B., Fausch K.D., and Young M.K. 2008. Analysis of trade-offs between threats of invasion by nonnative brook trout (Salvelinus fontinalis) and intentional isolation for native westslope cutthroat trout (Oncorhynchus clarkii lewisi). Can. J. Fish. Aquat. Sci. 65(4): 557–573.
Peterson D.P., Wenger S.J., Rieman B.E., and Isaak D.J. 2013. Linking climate change and fish conservation efforts using spatially explicit decision support tools. Fisheries, 38(3): 112–127.
Poff N.L. and Allan J.D. 1995. Functional-organization of stream fish assemblages in relation to hydrological variability. Ecology, 76(2): 606–627.
Rahel F.J. and Olden J.D. 2008. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22(3): 521–533.
Ritter T.D., Zale A.V., Grisak G., and Lance M.J. 2020. Groundwater upwelling regulates thermal hydrodynamics and salmonid movements during high-temperature events at a montane tributary confluence. Trans. Am. Fish. Soc. 149(5): 600–619.
Roberts J.J., Fausch K.D., Peterson D.P., and Hooten M.B. 2013. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin. Glob. Change Biol. 19(5): 1383–1398.
Roberts J.J., Fausch K.D., Hooten M.B., and Peterson D.P. 2017. Nonnative trout invasions combined with climate change threaten persistence of isolated cutthroat trout populations in the Southern Rocky Mountains. N. Am. J. Fish. Manage. 37(2): 314–325.
Rosenfeld J., Beecher H., and Ptolemy R. 2016. Developing bioenergetic-based habitat suitability curves for instream flow models. N. Am. J. Fish. Manage. 36(5): 1205–1219.
Sanderson T.B. and Hubert W.A. 2009. Movements by adult cutthroat trout in a lotic system: implications for watershed-scale management. Fish. Manage. Ecol. 16(4): 329–336.
Seiler S.M. and Keeley E.R. 2009. Competition between native and introduced salmonid fishes: cutthroat trout have lower growth rate in the presence of cutthroat–rainbow trout hybrids. Can. J. Fish. Aquat. Sci. 66(1): 133–141.
Shepard B.B. 2004. Factors that may be influencing nonnative brook trout invasion and their displacement of native westslope cutthroat trout in three adjacent southwestern Montana streams. N. Am. J. Fish. Manage. 24(3): 1088–1100.
Shepard, B.B. 2010. Evidence of niche similarity between cutthroat trout (Oncorhynchus clarkii) and brook trout (Salvelinus fontinalis): implications for displacement of native cutthroat trout by nonnative brook trout. Montana State University, Bozeman, Mont.
Shepard B.B., May B.E., and Urie W. 2005. Status and conservation of Westslope Cutthroat Trout within the western United States. N. Am. J. Fish. Manage. 25(4): 1426–1440.
Soule, M.K. 1987. Viable populations for conservation. Cambridge University Press, Cambridge, UK.
Taniguchi Y. and Nakano S. 2000. Condition-specific competition: implications for the altitudinal distribution of stream fishes. Ecology, 81(7): 2027–2039.
Taniguchi Y., Rahel F.J., Novinger D.C., and Gerow K.G. 1998. Temperature mediation of competitive interactions among three fish species that replace each other along longitudinal stream gradients. Can. J. Fish. Aquat. Sci. 55(8): 1894–1901.
Uthe P., Al-Chokhachy R., Zale A.V., Shepard B.B., McMahon T.E., and Stephens T. 2016. Life history characteristics and vital rates of Yellowstone cutthroat trout in two headwater basins. N. Am. J. Fish. Manage. 36(6): 1240–1253.
Vander Zanden M.J. and Olden J.D. 2008. A management framework for preventing the secondary spread of aquatic invasive species. Can. J. Fish. Aquat. Sci. 65(7): 1512–1522.
Warnock W.G. and Rasmussen J.B. 2013. Assessing the effects of fish density, habitat complexity, and current velocity on interference competition between bull trout (Salvelinus confluentus) and brook trout (Salvelinus fontinalis) in an artificial stream. Can. J. Zool. 91(9): 619–625.
Wengeler W.R., Kelt D.A., and Johnson M.L. 2010. Ecological consequences of invasive lake trout on river otters in Yellowstone National Park. Biol. Conserv. 143(5): 1144–1153.
Wenger S.J., Luce C.H., Hamlet A.F., Isaak D.J., and Neville H.M. 2010. Macroscale hydrologic modeling of ecologically relevant flow metrics. Water Resour. Res. 46.
Wenger S.J., Isaak D.J., Dunham J.B., Fausch K.D., Luce C.H., Neville H.M., et al. 2011a. Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, U.S.A. Can. J. Fish. Aquat. Sci. 68(6): 988–1008.
Wenger S.J., Isaak D.J., Luce C.H., Neville H.M., Fausch K.D., Dunham J.B., et al. 2011b. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc. Natl. Acad. Sci. U.S.A. 108(34): 14175–14180.

Supplementary Material

Supplementary data (cjfas-2020-0408suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 78Number 8August 2021
Pages: 1073 - 1083

Article versions

History

Received: 30 October 2020
Accepted: 25 January 2021
Accepted manuscript online: 14 February 2021
Version of record online: 14 February 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Robert Al-Chokhachy [email protected]
US Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Suite 2, Bozeman, MT 59715, USA.
Mike Lien
Friends of the Teton River, 18 N Main St. #310, Driggs, ID 83422, USA.
Bradley B. Shepard
B.B. Shepard & Associates, 65 9th Street Island Drive, Livingston, MT 59047, USA.
Brett High
Idaho Fish and Game Department, 4279 Commerce Cir, Idaho Falls, ID 83401, USA.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Native Yellowstone cutthroat trout Oncorhynchus virginalis bouvieri growth and survival in a headwater stream primarily driven by warming stream temperatures, with non-native brown trout Salmo trutta posing an additional threat to survival
2. Comparative QSAR and q-RASAR modeling for aquatic toxicity of organic chemicals to three trout species: O. Clarkii, S. Namaycush, and S. Fontinalis
3. Using social‐ecological models to explore stream connectivity outcomes for stakeholders and Yellowstone cutthroat trout
4. A Comprehensive Review of the Impacts of Climate Change on Salmon: Strengths and Weaknesses of the Literature by Life Stage
5. Chapter 27 : Northwest. Fifth National Climate Assessment
6. Stream size, temperature, and density explain body sizes of freshwater salmonids across a range of climate conditions
7. High densities of conspecifics buffer native fish from negative interactions with an ecologically similar invasive

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media