Where do you come from, where do you go: early life stage drift and migrations of cod inferred from otolith microchemistry and genetic population assignment

Publication: Canadian Journal of Fisheries and Aquatic Sciences
8 July 2021

Abstract

This study investigates stock mixing of genetically distinct Atlantic cod (Gadus morhua) stocks in the Kattegat, an area geographically located between the North Sea and the Baltic Sea, by combining genetic population identification with habitat assignments from hatch to capture from otolith microchemistry. Cod captured in Kattegat were genetically assigned to either the North Sea or the endemic Kattegat population. Otolith chemical fingerprints differed significantly between populations during the larval and pelagic juvenile stage with higher strontium and lower barium and manganese concentrations in the North Sea population than the Kattegat population, indicating that North Sea cod are spawned in the North Sea or Skagerrak and drift into the Kattegat during the early life stages. Individual cod of both populations undertook frequent, but predominantly short-term, migrations to other areas than the Kattegat, with <25% of individuals remaining resident within the Kattegat throughout their life. Across seasons and age classes, the two populations were both most frequently distributed in the Kattegat (67%), with approximately 25% of both population distributed in the western Baltic Sea and less than 10% in the Skagerrak–North Sea. This study demonstrates the usefulness of this approach to infer population-specific connectivity and migration trajectories for individual fish and its potential applications in basic and applied fields of fish ecology and fisheries sciences.

Graphical Abstract

Résumé

La présente étude se penche sur le mélange de stocks de morues (Gadus morhua) génétiquement distincts dans le Kattegat, une région située entre la mer du Nord et la mer Baltique, en combinant l’identification génétique à la population et l’affectation d’habitats de l’éclosion à la capture, à la lumière de la microchimie des otolites. Les morues capturées dans le Kattegat sont affectées génétiquement soit à la population de la mer du Nord ou à la population endémique au Kattegat. Les empreintes digitales chimiques des otolites des différentes populations diffèrent significativement aux étapes larvaire et pélagique juvénile, alors que les individus de la population de la mer du Nord présentent des concentrations plus élevées de strontium et plus faibles de baryum et de manganèse que ceux de la population du Kattegat, ce qui indique que les morues de la mer du Nord sont originaires de la mer du Nord ou du Skagerrak et dérivent jusque dans le Kattegat durant les premières étapes de la vie. Des individus des deux populations entreprennent des migrations fréquentes, mais la plupart du temps de courte durée, vers d’autres régions que le Kattegat, moins de 25 % des individus résidant toute leur vie dans le Kattegat. D’une saison et d’une classe d’âge à l’autre, les individus des deux populations se retrouvent le plus souvent dans le Kattegat (67 %), environ 25 % des individus des deux populations se trouvant dans l’ouest de la mer Baltique et moins de 10 %, dans le Skagerrak–la mer du Nord. L’étude démontre l’utilité de cette approche pour inférer la connectivité de populations et les trajectoires de migration des poissons individuels, ainsi que ses applications possibles dans des domaines fondamentaux et appliqués de l’écologie des poissons et des sciences halieutiques. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Albertsen, C.M. 2018. An approximate filter and smoother for general regime-switching state-space models in state-space modelling in marine science. Ph.D. thesis, National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark.
Albertsen C.M., Nielsen A., and Thygesen U.H. 2018. Connecting single-stock assessment models through correlated survival. ICES J. Mar. Sci. 75(1): 235–244.
Albertsen C.M., Hüssy K., Serre S.H., Hemmer Hansen J., and Thomsen T.B. 2021. Estimating migration patterns of fish from otolith chemical composition time series. Can. J. Fish. Aquat. Sci. 78(10): 1512–1523.
André C., Svedäng H., Knutsen H., Dahle G., Jonsson P., Ring A.-K., et al. 2016. Population structure in Atlantic cod in the eastern North Sea–Skagerrak–Kattegat: early life stage dispersal and adult migration. BMC Res. Notes, 9(1): 63.
Barth J.M.I., Berg P.R., Jonsson P., Bonanomi S., Corell H., Hemmer-Hansen J., et al. 2017. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Mol. Ecol. 26: 4452–4466.
Barth J.M.I., Villegas‐Ríos D., Freitas C., Moland E., Star B., André C., et al. 2019. Disentangling structural genomic and behavioural barriers in a sea of connectivity. Mol. Ecol. 28: 1394–1411.
Bath G.E., Thorrold S.R., Jones C.M., Campana S.E., McLaren J.W., and Lam J.W. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta, 64(10): 1705–1714.
Becker, R.A., and Wilks, A.R. 1993. Maps in S, AT&T Bell Laboratories Statistics Research Report [93.2]. Available from https://www.bell-labs.com/institute/publications/11214-910401-03tm/#gref.
Beckman, D., and Wilson, C.A. 1995. Seasonal timing of opaque zone formation in fish otoliths. In Recent developments in fish otolith research. Edited by D.H. Secor, J.M. Dean, and S.E. Campana. University of South Carolina Press, Columbia, S.C. pp. 27–44.
Berg P.R., Jentoft S., Star B., Ring K.H., Knutsen H., Lien S., et al. 2015. Adaptation to low salinity promotes genomic divergence in Atlantic cod (Gadus morhua L.). Genet. Biol. Evol. 7: 1644–1663.
Börjesson P., Jonsson P., Pacariz S., Björk G., Taylor M.I., and Svedäng H. 2013. Spawning of Kattegat cod (Gadus morhua) — Mapping spatial distribution by egg surveys. Fish. Res. 147: 63–71.
Brander K.M. 1994. The location and timing of cod spawning around the British Isles. ICES J. Mar. Sci. 51: 71–89.
Cadrin, S.X., and Secor, D.H. 2009. Accounting for spatial population structure in stock assessment: past, present, and future. In The future of fisheries science in North America. Springer, Dordrecht, the Netherlands. pp. 405–426.
Campana S.E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188: 263–297.
Campana S.E. and Thorrold S.R. 2001. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can. J. Fish. Aquat. Sci. 58(1): 30–38.
Carlson A.K., Phelps Q.E., and Graeb B.D.S. 2017. Chemistry to conservation: using otoliths to advance recreational and commercial fisheries management. J. Fish Biol. 90(2): 505–527.
Casini M., Cardinale M., Hjelm J., and Vitale F. 2005. Trends in cpue and related changes in spatial distribution of demersal fish species in the Kattegat and Skagerrak, eastern North Sea, between 1981 and 2003. ICES J. Mar. Sci. 62: 671–682.
Clarke L.M. and Friedland K.D. 2004. Influence of growth and temperature on strontium deposition in the otoliths of Atlantic salmon. J. Fish Biol. 65(3): 744–759.
Danielssen D. 1969. On the migrations of the cod in the Skagerrak shown by tagging experiments in the period 1954-1965. Fisk. Skr. Ser. Havundersøkelser, 15: 331–338. Available from https://brage.bibsys.no/xmlui/bitstream/handle/11250/114468/sh_vol15_03(21)_1969.pdf?sequence=1 [accessed 25 March 2019].
Dyrssen D. 1993. The Baltic–Kattegat–Skagerrak Estuarine System. Estuaries, 16(3): 446.
Eero, M., Hemmer-Hansen, J., Hüssy, K., Huwer, B., Berg, C., Mariani, P., et al. 2016. Optimal bæredygtig udnyttelse af tilgængelige torskebestande for dansk fiskeri. DTU Aqua Scientific Report (EMFF J.nr. 33010-13-k-0269). Charlottenlund, Denmark.
Elsdon T. and Gillanders B. 2003. Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar. Ecol. Prog. Ser. 260: 263–272.
Elsdon T.S. and Gillanders B.M. 2005. Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Can. J. Fish. Aquat. Sci. 62(5): 1143–1152.
Elsdon, T.S., Wells, B.K., Campana, S.E., Gillanders, B.M., Jones, C.M., Limburg, K.E., et al. 2008. Otolith chemistry to describe movements and life-history parameters of fishes—hypotheses, assumptions, limitations and inferences. In Oceanography and marine biology: an annual review. Edited by R.N. Gibson, A.R. J, and J.D.M. Gordon. CRC Press, Boca Raton, London, New York. pp. 297–330.
Estoup A., Largiader C.R., Perrot E., and Chourrout D. 1996. Rapid one tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol. Mar. Biol. Biotechnol. 5: 295–298.
Everitt, B., and Hothorn, T. 2011. An introduction to applied multivariate analysis with R. Springer, New York.
Fablet R., Daverat F., and De Pontual H. 2007. Unsupervised Bayesian reconstruction of individual life histories from otolith signatures: case study of Sr:Ca transects of European eel (Anguilla anguilla) otoliths. Can. J. Fish. Aquat. Sci. 64(1): 152–165.
Fox C.J., Taylor M., Dickey-Collas M., Fossum P., Kraus G., Rohlf N., et al. 2008. Mapping the spawning grounds of North Sea cod (Gadus morhua) by direct and indirect means. Proc. R Soc. B Biol. Sci. 275(1642): 1543–1548.
Goethel D.R., Quinn T.J., and Cadrin S.X. 2011. Incorporating spatial structure in stock assessment: movement modeling in marine fish population dynamics. Rev. Fish. Sci. 19(2): 119–136.
Heath M.R., Culling M.A., Crozier W.W., Fox C.J., Gurney W.S.C., Hutchinson W.F., et al. 2014. Combination of genetics and spatial modelling highlights the sensitivity of cod (Gadus morhua) population diversity in the North Sea to distributions of fishing. ICES J. Mar. Sci. 71: 794–807.
Heidemann F., Marohn L., Hinrichsen H.H., Huwer B., Hüssy K., Klügel A., et al. 2012. Suitability of otolith microchemistry for stock separation of Baltic cod. Mar. Ecol. Prog. Ser. 465: 217–226.
Heimbrand Y., Limburg K., Hüssy K., Casini M., Sjöberg R., Palmén Bratt A.-M., et al. 2020. Seeking the true time: Exploring otolith chemistry as an age-determination tool. J. Fish Biol. 97(2): 552–565.
Hicks A.S., Closs G.P., and Swearer S.E. 2010. Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: A multi-element approach for tracking diadromous migrations. J. Exp. Mar. Biol. Ecol. 394(1): 86–97.
Høie H. and Folkvord A. 2006. Estimating the timing of growth rings in Atlantic cod otoliths using stable oxygen isotopes. J. Fish Biol. 68(3): 826–837.
Hüssy K. 2011. Review of western Baltic cod (Gadus morhua) recruitment dynamics. ICES J. Mar. Sci. 68: 1459–1471.
Hüssy K., Gröger J., Heidemann F., Hinrichsen H.-H., and Marohn L. 2016. Slave to the rhythm: Seasonal signals in otolith microchemistry reveal age of eastern Baltic cod (Gadus morhua). ICES J. Mar. Sci. 73(4): 1019–1032.
Hüssy K., Limburg K.E., de Pontual H., Thomas O.R.B., Cook P.K., Heimbrand Y., et al. 2020. Trace element patterns in otoliths: the role of biomineralization. Rev. Fish. Sci. Aquacult. [In press].
Hüssy K., Krüger-Johnsen M., Thomsen T.B., Heredia B.D., Naeraa T., Limburg K.E., et al. 2021. It’s elemental, my dear Watson: Validating seasonal patterns in otolith chemical chronologies. Can. J. Fish. Aquat. Sci. 78(7): 551–566.
Huwer B., Hinrichsen H.-H., Hüssy K., and Eero M. 2016. Connectivity of larval cod in the transition area between North Sea and Baltic Sea and potential implications for fisheries management. ICES J. Mar. Sci. 73(7): 1815–1824.
ICES. 2015. Report of the Benchmark Workshop on Baltic Cod Stocks (WKBALTCOD). ICES C. 2015/ACOM35 (2–6 March 2015, Rostock, Germany).
ICES. 2019. Baltic Fisheries Assessment Working Group (WGBFAS). ICES Sci. Rep. 1: 20.
ICES. 2020. Cod (Gadus morhua) in Subdivision 21 (Kattegat). In Report of the ICES Advisory Committee, 2020. ICES Advice 2020, cod.27. 21.
Jakobsen F. 1997. Hydrographic investigation of the Northern Kattegat front. Cont. Shelf Res. 17(5): 533–554.
Jonsson P.R., Corell H., André C., Svedäng H., and Moksnes P.-O. 2016. Recent decline in cod stocks in the North Sea–Skagerrak–Kattegat shifts the sources of larval supply. Fish. Oceanogr. 25(3): 210–228.
Kerr L., Hintzen N., Cadrin S., Worsøe Clausen L., Dickey-Collas M., Goethel D.R., et al. 2017. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74(6): 1708–1722.
Knutsen H., André C., Jorde P.E., Skogen M.D., Thuróczy E., and Stenseth N.C. 2004. Transport of North Sea cod larvae into the Skagerrak coastal populations. Proc. R. Soc. B Biol. Sci. 271(1546): 1337–1344.
Kraus R.T. and Secor D.H. 2004. Incorporation of strontium into otoliths of an estuarine fish. J. Exp. Mar. Biol. Ecol. 302(1): 85–106.
Kristensen K., Nielsen A., Berg C.W., Skaug H., and Bell B.M. 2016. TMB: Automatic differentiation and Laplace approximation. J. Stat. Softw. 70(5): 1–21.
Lear J., Hare D.J., Fryer F., Adlard P.A., Finkelstein D.I., and Doble P.A. 2012. High-resolution elemental bioimaging of Ca, Mn, Fe, Co, Cu, and Zn employing LA-ICP-MS and hydrogen reaction gas. Anal. Chem. 84(15): 6707–6714.
Li L., Høie H., Geffen A.J., Heegaard E., Skadal J., and Folkvord A. 2008. Back-calculation of previous fish size using individually tagged and marked Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 65(11): 2496–2508.
Limburg K.E. 1995. Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Mar. Ecol. Prog. Ser. 119(1–3): 25–35.
Limburg K.E., Olson C., Walther Y., Dale D., Slomp C.P., and Hoie H. 2011. Tracking Baltic hypoxia and cod migration over millennia with natural tags. Proc. Natl. Acad. Sci. U.S.A. 108(22): E177–E182.
Limburg K.E., Walther B.D., Lu Z., Jackman G., Mohan J., Walther Y., et al. 2015. In search of the dead zone: Use of otoliths for tracking fish exposure to hypoxia. J. Mar. Syst. 141: 167–178.
Limburg K.E., Wuenschel M.J., Hüssy K., Heimbrand Y., and Samson M. 2018. Making the otolith magnesium chemical calendar-clock tick: plausible mechanism and empirical evidence. Rev. Fish. Sci. Aquac. 26(4): 479–493.
Miller J.A. 2011. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions. J. Exp. Mar. Biol. Ecol. 405(1): 42–52.
Milton D.A. and Chenery S.R. 2001. Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J. Exp. Mar. Biol. Ecol. 264(1): 47–65.
Munk P., Fox C.J., Bolle L.J., van Damme C.J.G., Fossum P., and Kraus G. 2009. Spawning of North Sea fishes linked to hydrographic features. Fish. Oceanogr. 18(6): 458–469.
Nielsen E.E., Hansen M.M., Ruzzante D.E., Meldrup D., and Grønkjær P. 2003. Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Mol. Ecol. 12: 1497−–1508.
Nielsen E.E., Cariani A., Mac Aoidh E., Maes G.E., Milano I., Ogden R., et al. 2012. Gene-associated markers provide tools for tackling illegal fishing and false eco-certification. Nat. Comm. 3: 851.
Oeberst, R. 2008. Distribution pattern of cod and flounder in the Baltic Sea based on international coordinated trawl surveys. ICES CM 2008/J:09.
Pihl L. and Ulmestrand M. 1993. Migration pattern of juvenile cod (Gadus morhua) on the Swedish west coast. ICES J. Mar. Sci. 50(1): 63–70.
Piry S., Alapetite A., Cornuet J.-M., Paetkau D., Baudouin L., and Estoup A. 2004. GeneClass2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95: 536–539.
Rannala B. and Mountain J.L. 1997. Detecting immigration by using multilocus genotypes. Proc. Nat. Acad. Sci. U.S.A. 94: 9197–9221.
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/.
Reis-Santos P., Tanner S.E., Elsdon T.S., Cabral H.N., and Gillanders B.M. 2013. Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. J. Exp. Mar. Biol. Ecol. 446: 245–252.
Righton D.A., Andersen K.H., Neat F., Thorsteinsson V., Steingrund P., Svedäng H., et al. 2010. Thermal niche of Atlantic cod Gadus morhua: Limits, tolerance and optima. Mar. Ecol. Prog. Ser. 420: 1–13.
Rosenberg R., Loo L.-O., and Möller P. 1992. Hypoxia, salinity and temperature as structuring factors for marine benthic communities in a eutrophic area. Neth. J. Sea Res. 30: 121–129.
Rosenberg R., Cato I., Förlin L., Grip K., and Rodhe J. 1996. Marine environment quality assessment of the Skagerrak–Kattegat. J. Sea Res. 35(1–3): 1–8.
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., and Eliceiri K.W. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1): 529.
Secor D.H., Henderson-Arzapalo A., and Piccoli P.M. 1995. Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? J. Exp. Mar. Biol. Ecol. 192(1): 15–33.
Serre S.H., Nielsen K.E., Fink-Jensen P., Thomsen T., and Hüssy K. 2018. Analysis of cod otolith microchemistry by continuous line transects using LA-ICP-MS. Geological Survey of Denmark and Greenland Bulletin, 41: 91–94.
Shin J.-H., Blay S., McNeney B., and Graham J. 2006. LDheatmap: An R Function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J. Stat. Softw. 16(C03).
Stenseth N.C., Jorde P.E., Chan K.-S., Hansen E., Knutsen H., André C., et al. 2006. Ecological and genetic impact of Atlantic cod larval drift in the Skagerrak. Proc. R Soc. B Biol. Sci. 273(1590): 1085–1092.
Sturrock A.M., Hunter E., Milton J.A., EIMF, Johnson R.C., Waring C.P., and Trueman C.N. 2015. Quantifying physiological influences on otolith microchemistry. Methods Ecol. Evol. 6(7): 806–816.
Sturrock A.M., Trueman C.N., Darnaude A.M., and Hunter E. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? J. Fish Biol. 81(2): 766–795.
Svansson, A. 1975. Physical and chemical oceanography of the Skagerrak and the Kattegat. Fishery Board of Sweden, Uddevalla. Available from https://gupea.ub.gu.se/bitstream/2077/49089/1/gupea_2077_49089_1.pdf.
Svedäng H., Righton D., and Jonsson P. 2007. Migratory behaviour of Atlantic cod Gadus morhua: natal homing is the prime stock-separating mechanism. Mar. Ecol. Prog. Ser. 345: 1–12.
Svedäng H., André C., Jonsson P., Elfman M., and Limburg K.E. 2010. Migratory behaviour and otolith chemistry suggest fine-scale sub-population structure within a genetically homogenous Atlantic Cod population. Environ. Biol. Fish. 89(3–4): 383–397.
Tang, Y., and Li, W., 2016. lfda: an R package for local fisher discriminant analysis and visualization. Available from https://arxiv.org/abs/1612.09219.
Venables, W.N., and Ripley, B.D. 2002. Modern applied statistics with S. 4th ed. Springer, New York. Available from https://www.stats.ox.ac.uk/pub/MASS4/.
Vitale F., Börjesson P., Svedäng H., and Casini M. 2008. The spatial distribution of cod (Gadus morhua L.) spawning grounds in the Kattegat, eastern North Sea. Fish. Res. 90(1–3): 36–44.
Vitale, F., Worsøe Clausen, L., and Ní Chonchúir, G. 2019. Handbook of fish age estimation protocols and validation methods. ICES Cooperative Research Report No. 346.
Walther B.D. and Limburg K.E. 2012. The use of otolith chemistry to characterize diadromous migrations. J. Fish Biol. 81(2): 796–825.
Walther B.D., Kingsford M.J., O’Callaghan M.D., and McCulloch M.T. 2010. Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. Environ. Biol. Fishes, 89(3–4): 441–451.
Watanabe T., Kiron V., and Satoh S. 1997. Trace minerals in fish nutrition. Aquaculture, 151(1–4): 185–207.
Weidman C.R. and Millner R. 2000. High-resolution stable isotope records from North Atlantic cod. Fish. Res. 46(1–3): 327–342.

Supplementary Material

Supplementary data (cjfas-2020-0409suppla.pdf)

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 79Number 2February 2022
Pages: 300 - 313

History

Received: 30 October 2020
Accepted: 11 June 2021
Published online: 8 July 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Karin Hüssy kh@aqua.dtu.dk
National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, building 201, Lyngby Campus, 2800 Kgs. Lyngby, Denmark.
Christoffer Moesgaard Albertsen
National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, building 201, Lyngby Campus, 2800 Kgs. Lyngby, Denmark.
Jakob Hemmer-Hansen
National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark.
Morten Vinther
National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, building 201, Lyngby Campus, 2800 Kgs. Lyngby, Denmark.
Simon Hansen Serre
Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K., Denmark.
Tonny Bernt Thomsen
Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K., Denmark.
Margit Eero
National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, building 201, Lyngby Campus, 2800 Kgs. Lyngby, Denmark.

Funding Information

The study was supported by the Danish Ministry for Environment and Food and the European Maritime Fisheries Fond through the projects “Sustainable management of Kattegat cod; better know-ledge of stock components and migration” (grant No. 33113-B-16–034) and “Management of mixed cod stocks in the transition zone between the North Sea and the Baltic Sea: How can this be achieved most efficiently?” (grant No. 33113-B-19–140).

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media