Trends in phytoplankton communities within large marine ecosystems diverge from the global ocean

Publication: Canadian Journal of Fisheries and Aquatic Sciences1 October 2021https://doi.org/10.1139/cjfas-2020-0423

Abstract

Large marine ecosystems (LMEs) are highly productive regions of the world ocean under anthropogenic pressures; we analyzed trends in sea surface temperature (SST), cloud fraction (CF), and chlorophyll concentration (CHL) over the period 1998–2019. Trends in these parameters within LMEs diverged from the world ocean. SST and CF inside LMEs increased at greater rates inside LMEs, whereas CHL decreased at a greater rates. CHL declined in 86% of all LMEs and of those trends, 70% were statistically significant. Complementary analyses suggest phytoplankton functional types within LMEs have also diverged from those characteristic of the world ocean, most notably, the contribution of diatoms and dinoflagellates, which have declined within LMEs. LMEs appear to be warming rapidly and receiving less solar radiation than the world ocean, which may be contributing to changes at the base of the food chain. Despite increased fishing effort, fishery yields in LMEs have not increased, pointing to limitations related to productivity. These changes raise concerns over the stability of these ecosystems and their continued ability to support services to human populations.

Résumé

Les grands écosystèmes marins (LME) sont des régions très productives de l’océan planétaire exposées à des pressions d’origine humaine. Nous analysons les tendances de la température de la surface de la mer (TSM), de la proportion de nuages (PN) et de la concentration de chlorophylle (CHL) durant la période de 1998 à 2019. Les tendances de ces paramètres dans les LME divergent de celles de l’océan planétaire. La TSM et la PN ont augmenté plus rapidement dans les LME, alors que la CHL a diminué plus rapidement. Cette dernière a diminué dans 86 % de tous les LME, 70 % de ces baisses étant statistiquement significatives. Des analyses complémentaires indiqueraient que les types fonctionnels de phytoplancton dans les LME ont également divergé de ceux de l’océan planétaire, notamment en ce qui concerne les contributions des diatomées et des dinoflagellés, qui ont baissé dans les LME. Les LME semblent se réchauffer rapidement et recevoir moins de rayonnement solaire que l’océan planétaire, ce qui pourrait contribuer à des changements à la base de la chaîne alimentaire. Malgré un effort de pêche accru, les rendements des pêches dans les LME n’ont pas augmenté, ce qui indique des limites reliées à la productivité. Ces changements soulèvent des inquiétudes concernant la stabilité de ces écosystèmes et leur capacité de continuer à soutenir des services aux populations humaines. [Traduit par la Rédaction]
Get full access to this article.

View all available purchase options and get full access to this article.

References

Anderson S.R. and Harvey E.L. 2019. Seasonal variability and drivers of microzooplankton grazing and phytoplankton growth in a subtropical estuary. Front. Mar. Sci. 6: 174.
Asch R.G., Stock C.A., and Sarmiento J.L. 2019. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Global Change Biol. 25(8): 2544–2559.
Batt R.D., Morley J.W., Selden R.L., Tingley M.W., and Pinsky M.L. 2017. Gradual changes in range size accompany long-term trends in species richness. Ecol. Lett. 20(9): 1148–1157.
Behrenfeld M.J., O’Malley R.T., Boss E.S., Westberry T.K., Graff J.R., Halsey K.H., et al. 2016. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Change, 6(3): 323–330.
Bell J.D., Watson R.A., and Ye Y. 2017. Global fishing capacity and fishing effort from 1950 to 2012. Fish Fish. 18(3): 489–505.
Burrows M.T., Bates A.E., Costello M.J., Edwards M., Edgar G.J., Fox C.J., et al. 2019. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change, 9(12): 959–963.
Burson A., Stomp M., Greenwell E., Grosse J., and Huisman J. 2018. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology, 99(5): 1108–1118.
Capotondi A., Alexander M.A., Bond N.A., Curchitser E.N., and Scott J.D. 2012. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res.-Oceans. 117.
Castellani, C., and Edwards, M. 2017. Marine plankton: a practical guide to ecology, methodology, and taxonomy. Oxford University Press.
Chassot E., Bonhommeau S., Dulvy N.K., Melin F., Watson R., Gascuel D., and Le Pape O. 2010. Global marine primary production constrains fisheries catches. Ecol Lett. 13(4): 495–505.
Chen Y.-J., Hwang Y.-T., Zelinka M.D., and Zhou C. 2019. Distinct patterns of cloud changes associated with decadal variability and their contribution to observed cloud cover trends. J. Climate. 32(21): 7281–7301.
Cheng L., Abraham J., Hausfather Z., and Trenberth K.E. 2019. How fast are the oceans warming? Science, 363(6431): 128–129.
Christensen, V., Walters, C.J., Ahrens, R.N.M., Alder, J., Buszowski, J., and Christensen, L.B., 2008. Models of the world’s large marine ecosystems. Technical Series. Intergovernmental Oceanographic Commission = Série technique. Available from http://www.vliz.be/en/imis?refid=129497 [accessed 24 June 2020].
Costanza R., de Groot R., Sutton P., van der Ploeg S., Anderson S.J., Kubiszewski I., et al. 2014. Changes in the global value of ecosystem services. Global Environ. Change, 26: 152–158.
Curtis S. 2019. Means and long-term trends of global coastal zone precipitation. Sci. Rep. 9: 5401.
Dantas D.D.F., Caliman A., Guariento R.D., Angelini R., Carneiro L.S., Lima S.M.Q., et al. 2019. Climate effects on fish body size – trophic position relationship depend on ecosystem type. Ecography, 42(9): 1579–1586.
Doney S.C. 2006. Plankton in a warmer world. Nature, 444(7120): 695–696.
Durant J.M., Molinero J.C., Ottersen G., Reygondeau G., Stige L.C., and Langangen O. 2019. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Sci. Rep. 9: 15213.
Dutkiewicz S., Hickman A.E., Jahn O., Henson S., Beaulieu C., and Monier E. 2019. Ocean colour signature of climate change. Nat. Commun. 10: 578.
Ellegaard M. and Ribeiro S. 2018. The long-term persistence of phytoplankton resting stages in aquatic ‘seed banks’. Biol. Rev. 93(1): 166–183.
Frainer A., Primicerio R., Kortsch S., Aune M., Dolgov A.V., Fossheim M., and Aschan M.M. 2017. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. U.S.A. 114(46): 12202–12207.
Friedland K.D., Ahrenholz D.W., and Haas L.W. 2005. Viable gut passage of cyanobacteria through the filter-feeding fish Atlantic menhaden, Brevoortia tyrannus. J. Plankton Res. 27(7): 715–718.
Friedland K.D., Mouw C.B., Asch R.G., Ferreira A.S.A., Henson S., Hyde K.J.W., et al. 2018. Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales. Global Ecol. Biogeogr. 27(5): 551–569.
Friedland K.D., Langan J.A., Large S.I., Selden R.L., Link J.S., Watson R.A., and Collie J.S. 2020. Changes in higher trophic level productivity, diversity and niche space in a rapidly warming continental shelf ecosystem. Sci. Total Environ. 704: 135270.
Groom S., Sathyendranath S., Ban Y., Bernard S., Brewin R., Brotas V., et al. 2019. Satellite ocean colour: current status and future perspective. Front Mar Sci. 6: 485.
Halpern B.S., Selkoe K.A., Micheli F., and Kappel C.V. 2007. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21(5): 1301–1315.
Harvey B.P., Agostini S., Kon K., Wada S., and Hall-Spencer J.M. 2019. Diatoms dominate and alter marine food-webs when CO2 rises. Diversity, 11(12): 242.
Hastings R.A., Rutterford L.A., Freer J.J., Collins R.A., Simpson S.D., and Genner M.J. 2020. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30(8): 1572–1577 e2.
Hatzianastassiou N., Ioannidis E., Korras-Carraca M.-B., Gavrouzou M., Papadimas C.D., Matsoukas C., et al. 2020. Global dimming and brightening features during the first decade of the 21st Century. Atmosphere, 11(3): 308.
Henson S., Cole H., Beaulieu C., and Yool A. 2013. The impact of global warming on seasonality of ocean primary production. Biogeosciences, 10(6): 4357–4369.
Henson S.A., Beaulieu C., and Lampitt R. 2016. Observing climate change trends in ocean biogeochemistry: when and where. Global Change Biol. 22(4): 1561–1571.
Hirata T., Hardman-Mountford N.J., Brewin R.J.W., Aiken J., Barlow R., Suzuki K., et al. 2011. Synoptic relationships between surface chlorophyll-a and diagnostic pigments specific to phytoplankton functional types. Biogeosciences, 8(2): 311–327.
Hopwood M.J., Carroll D., Browning T.J., Meire L., Mortensen J., Krisch S., and Achterberg E.P. 2018. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9(1): 3256.
Howarth L.M., Roberts C.M., Thurstan R.H., and Stewart B.D. 2014. The unintended consequences of simplifying the sea: making the case for complexity. Fish Fish. 15(4): 690–711.
Huxel G.R. and McCann K. 1998. Food web stability: The influence of trophic flows across habitats. Am. Nat. 152(3): 460–469.
Jang C.J., Park J., Park T., and Yoo S. 2011. Response of the ocean mixed layer depth to global warming and its impact on primary production: a case for the North Pacific Ocean. ICES J. Mar. Sci. 68(6): 996–1007.
Jeffrey, S.W., Wright, S.W., and Zapata, M. 2011. Microalgal classes and their signature pigments. In Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Edited by C.A. Llewellyn, E.S. Egeland, G. Johnsen, and S. Roy. Cambridge University Press, Cambridge. pp. 3–77.
Joy‐Warren H.L., Dijken G.L.V., Alderkamp A.-C., Leventer A., Lewis K.M., Selz V., et al. 2019. Light is the primary driver of early season phytoplankton production along the western Antarctic Peninsula. J. Geophys. Res. Oceans, 124(11): 7375–7399.
Jyothibabu R., Arunpandi N., Jagadeesan L., Karnan C., Lallu K.R., and Vinayachandran P.N. 2018. Response of phytoplankton to heavy cloud cover and turbidity in the northern Bay of Bengal. Sci. Rep. 8(1): 1–15.
Kortsch S., Primicerio R., Fossheim M., Dolgov A.V., and Aschan M. 2015. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B Biol. Sci. 282(1814): 31–39.
Kramer S.J. and Siegel D.A. 2019. How can phytoplankton pigments be best used to characterize surface ocean phytoplankton groups for ocean color remote sensing algorithms? J. Geophys. Res. Oceans, 124(11): 7557–7574.
La H.S. and Park K. 2016. The Evident Role of Clouds on Phytoplankton Abundance in Antarctic Coastal Polynyas. Terrest. Atmos. Ocean. Sci. 27: 293–301.
Lawson, C.L., and Hanson, R.J. 1995. Solving least squares problems. Society for Industrial and Applied Mathematics.
Link J.S., Watson R.A., Pranovi F., and Libralato S. 2020. Comparative production of fisheries yields and ecosystem overfishing in African large marine ecosystems. Environ. Dev. 36: 100529.
Lotze H.K., Tittensor D.P., Bryndum-Buchholz A., Eddy T.D., Cheung W.W.L., Galbraith E.D., et al. 2019. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. U.S.A. 116(26): 12907–12912.
Mann H.B. 1945. Nonparametric tests against trend. Econometrica, 13: 245–259.
Maritorena S., d’Andon O.H.F., Mangin A., and Siegel D.A. 2010. Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues. Remote Sens. Environ. 114(8): 1791–1804.
Merillet L., Kopp D., Robert M., Mouchet M., and Pavoine S. 2020. Environment outweighs the effects of fishing in regulating demersal community structure in an exploited marine ecosystem. Global Change Biol. 26: 2106–2119.
Mishra A.K. 2019. Investigating changes in cloud cover using the long-term record of precipitation extremes. Meteorol. Appl. 26(1): 108–116.
Moisan T.A., Rufty K.M., Moisan J.R., and Linkswiler M.A. 2017. Satellite observations of phytoplankton functional type spatial distributions, phenology, diversity, and ecotones. Front. Mar. Sci. 4: 189.
Paerl H.W. 2018. Mitigating toxic planktonic cyanobacterial blooms in aquatic ecosystems facing increasing anthropogenic and climatic pressures. Toxins, 10(2): 76.
Pauly D. and Christensen V. 1995. Primary production required to sustain global fisheries. Nature, 374(6519): 255–257.
Pecuchet L., Blanchet M.-A., Frainer A., Husson B., Jørgensen L.L., Kortsch S., and Primicerio R. 2020. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web. Global Change Biol. 26(9): 4894–4906.
Petrik C.M., Stock C.A., Andersen K.H., van Denderen P.D., and Watson J.R. 2019. Bottom-up drivers of global patterns of demersal, forage, and pelagic fishes. Prog. Oceanogr. 176: 102124.
Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T., and Gould H. 1987. Numerical recipes, the art of scientific computing. Am. J. Phys. 55(1): 90–91.
Reynolds R.W., Smith T.M., Liu C., Chelton D.B., Casey K.S., and Schlax M.G. 2007. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20(22): 5473–5496.
Rousseau Y., Watson R.A., Blanchard J.L., and Fulton E.A. 2019. Evolution of global marine fishing fleets and the response of fished resources. Proc. Natl. Acad. Sci. U.S.A. 116: 12238–12243.
Roxy M.K., Modi A., Murtugudde R., Valsala V., Panickal S., Kumar S.P., et al. 2016. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett. 43(2): 826–833.
Sallée J.-B., Pellichero V., Akhoudas C., Pauthenet E., Vignes L., Schmidtko S., et al. 2021. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature, 591(7851): 592–598.
Salo T., Mattila J., and Ekl?F J. 2020. Long-term warming affects ecosystem functioning through species turnover and intraspecific trait variation. Oikos, 129(2): 283–295.
Schiller L., Bailey M., Jacquet J., and Sala E. 2018. High seas fisheries play a negligible role in addressing global food security. Sci Adv. 4(8): eaat8351.
Shackell N.L., Bundy A., Nye J.A., and Link J.S. 2012. Common large-scale responses to climate and fishing across Northwest Atlantic ecosystems. ICES J. Mar. Sci. 69(2): 151–162.
Sherman K. 1991. The large marine ecosystem concept: research and management strategy for living marine resources. Ecol. Appl. 1(4): 349–360.
Sherman K. and Duda A.M. 1999. Large marine ecosystems: An emerging paradigm for fishery sustainability. Fisheries, 24(12): 15–26.
Smetacek V. 2018. Seeing is believing: diatoms and the ocean carbon cycle revisited. Protist, 169(6): 791–802.
Somavilla R., Gonzalez-Pola C., and Fernandez-Diaz J. 2017. The warmer the ocean surface, the shallower the mixed layer. How much of this is true? J. Geophys. Res. Oceans, 122(9): 7698–7716.
Spies I., Gruenthal K.M., Drinan D.P., Hollowed A.B., Stevenson D.E., Tarpey C.M., and Hauser L. 2020. Genetic evidence of a northward range expansion in the eastern Bering Sea stock of Pacific cod. Evol. Appl. 13(2): 362–375.
Stock C.A., John J.G., Rykaczewski R.R., Asch R.G., Cheung W.W.L., Dunne J.P., et al. 2017. Reconciling fisheries catch and ocean productivity. Proc. Natl. Acad. Sci. U.S.A. 114(8): E1441–E1449.
Strom S.L., Macri E.L., and Fredrickson K.A. 2010. Light limitation of summer primary production in the coastal Gulf of Alaska: physiological and environmental causes. Mar. Ecol. Prog. Ser. 402: 45–57.
Teixeira I.G., Arbones B., Froján M., Nieto-Cid M., Álvarez-Salgado X.A., Castro C.G., et al. 2018. Response of phytoplankton to enhanced atmospheric and riverine nutrient inputs in a coastal upwelling embayment. Estuar. Coast. Shelf Sci. 210: 132–141.
Trombetta T., Vidussi F., Mas S., Parin D., Simier M., and Mostajir B. 2019. Water temperature drives phytoplankton blooms in coastal waters. PLoS ONE, 14(4): e0214933.
Turner J.T. 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43: 255–266.
Uitz J., Claustre H., Morel A., and Hooker S.B. 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. 111(C8).
Ullah H., Nagelkerken I., Goldenberg S.U., and Fordham D.A. 2018. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16(1): e2003446.
Valenzuela J.J., López García de Lomana A., Lee A., Armbrust E.V., Orellana M.V., and Baliga N.S. 2018. Ocean acidification conditions increase resilience of marine diatoms. Nat. Commun. 9(1): 2328.
van Denderen P.D., Lindegren M., MacKenzie B.R., Watson R.A., and Andersen K.H. 2018. Global patterns in marine predatory fish. Nat. Ecol. Evol. 2(1): 65–70.
Watson R.A. and Tidd A. 2018. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Pol. 93: 171–177.
Watson R.A., Cheung W.W.L., Anticamara J.A., Sumaila R.U., Zeller D., and Pauly D. 2013. Global marine yield halved as fishing intensity redoubles. Fish Fish, 14(4): 493–503.
Wilson A.M. and Jetz W. 2016. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLOS Biol. 14(3): e1002415.
Wirtz K.W. 2012. Who is eating whom? Morphology and feeding type determine the size relation between planktonic predators and their ideal prey. Mar. Ecol. Prog. Ser. 445: 1–12.
Yamaguchi R. and Suga T. 2019. Trend and variability in global upper-ocean stratification since the 1960s. J. Geophys. Res. Oceans, 124: 8933–8948.
Yi Z., Xu M., Di X., Brynjolfsson S., and Fu W. 2017. Exploring Valuable Lipids in Diatoms. Front. Mar. Sci. 4: 17.
Yuan Q., Shen H., Li T., Li Z., Li S., Jiang Y., et al. 2020. Deep learning in environmental remote sensing: achievements and challenges. Rem. Sens. Environ. 241: 111716.
Yue S., Pilon P., Phinney B., and Cavadias G. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 16(9): 1807–1829.

Supplementary Material

Supplementary data (cjfas-2020-0423suppla.docx)

Information & Authors

Information

Published In

Canadian Journal of Fisheries and Aquatic Sciences cover image
Canadian Journal of Fisheries and Aquatic Sciences
Volume 78Number 11November 2021
Pages: 1689 - 1700

History

Received: 11 November 2020
Accepted: 6 May 2021
Published online: 1 October 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Kevin D. Friedland kevin.friedland@noaa.gov
Northeast Fisheries Science Center, Narragansett, Rhode Island, USA.
John R. Moisan
Wallops Flight Facility, Goddard Space Flight Center, Wallops Island, Virginia, USA.
Aurore A. Maureaud
Centre for Ocean Life & Section for Ecosystem Based Marine Management, National Institute for Aquatic Sciences (DTU Aqua), Technical University of Denmark, Denmark.
Center for Biodiversity & Global Change, Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
Damian C. Brady
School of Marine Sciences, University of Maine, Walpole, Maine, USA.
Andrew J. Davies
Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA.
Steven J. Bograd
Environmental Research Division, NOAA Southwest Fisheries Science Center, Monterey, California, USA.
Institute of Marine Sciences, University of California-Santa Cruz, Santa Cruz, California, USA.
Reg A. Watson
Centre for Marine Socioecology, University of Tasmania, Private Bag 129, Hobart, Australia.
Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Australia.
Yannick Rousseau
Centre for Marine Socioecology, University of Tasmania, Private Bag 129, Hobart, Australia.
Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Australia.

Notes

©2021 The Author(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

Full Text

Open Full Text

PDF

Download PDF

Media

Figures

Other

Tables

Share Options

Share

Share the article link

Share with email

Share on social media