Mixed stock analysis of genetic compositions of lake sturgeon (Acipenser fulvescens) mixtures in Lake Michigan: hierarchical spatial heterogeneity and evidence of improving recruitment in Wisconsin spawning populations

Publication: Canadian Journal of Fisheries and Aquatic Sciences
28 September 2021

Abstract

Information regarding site occupancy of fish that migrate long distances during nonspawning periods together with estimates of recruitment trends for individual populations can be informative for management, especially when individuals from different spawning populations intermix and are sampled or harvested together. Tendencies for individuals from different populations to preferentially occupy specific regions increases vulnerability to anthropogenic and natural disturbances. Using mixed stock analysis (MSA), we estimated population-specific occupancy of lake sturgeon (Acipenser fulvescens) in open-water and nearshore regions of Lake Michigan across a hierarchy of spatial scales. Open-water mixture composition differed between Lake Michigan’s eastern and western basins. Significant heterogeneity in habitat occupancy was also observed at microgeographic scales throughout open-water regions of Green Bay, indicating nonrandom occupancy to regions proximal to natal streams. Estimates of relative recruitment levels determined from MSA extensions indicated increasing recruitment trends for spawning populations associated with Wisconsin tributaries (Oconto–Peshtigo, Fox, and Menominee rivers). Our lake sturgeon results demonstrate the utility of genetic data for informing management efforts for spatially structured, highly migratory species. Similar analyses could prove beneficial for species with similar characteristics.

Résumé

De l’information sur l’occupation de sites par des poissons migrant sur de longues distances en dehors des saisons de frai, combinée à des estimations des tendances de recrutement pour différentes populations, peut être utile pour la gestion, particulièrement dans les cas où des individus de différentes populations reproductrices se mélangent et sont échantillonnés ou pêchés ensemble. La tendance d’individus de différentes populations d’occuper préférentiellement des régions précises rehausse leur vulnérabilité à des perturbations d’origine humaine ou naturelle. Nous avons utilisé l’analyse de stocks mélangés (ASM) pour estimer l’occupation selon la population d’esturgeons jaunes (Acipenser fulvescens) dans des secteurs côtiers et d’eaux libres du lac Michigan à différentes échelles spatiales. La composition du mélange en eaux libres n’était pas la même pour les bassins est et ouest du lac Michigan. Une hétérogénéité significative de l’occupation d’habitats est également relevée à des échelles microgéographiques dans tous les secteurs d’eaux libres de la baie Green, témoignant d’une occupation non aléatoire des secteurs situés près de cours d’eau natals. L’estimation des niveaux de recrutement relatifs à l’aide d’extensions de l’ASM révèle des tendances d’augmentation du recrutement pour des populations reproductrices associées à des affluents au Wisconsin (rivières Oconto–Peshtigo, Fox et Menominee). Nos résultats concernant les esturgeons jaunes démontrent l’utilité de données génétiques pour les efforts de gestion visant des espèces hautement migratrices structurées dans l’espace. Des analyses semblables pourraient s’avérer utiles pour d’autres espèces aux caractéristiques semblables. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Abadi F., Gimenez O., Arlettaz R., and Schaub M. 2010. An assessment of integrated population models: bias, accuracy, and violation of the assumption of independence. Ecology, 91: 7–14.
Alaska Department of Fish and Game. 2003. SPAM (Statistics Program for Analyzing Mixtures) Version 3.7: Addendum II to User’s Guide for Version 3.2. Addendum II to Special Publication 15. Alaska Department of Fish and Game, Commercial Fisheries Division, Gene Conservation Lab, Anchorage, Alaska.
Anderson E.C., Waples R.S., and Kalinowski S.T. 2008. An improved method for predicting the accuracy of genetic stock identification. Can. J. Fish. Aquat. Sci. 65(7): 1475–1486.
Andvik R.T., Sloss B.L., VanDeHey J.A., Claramunt R.M., Hansen S.P., and Isermann D.A. 2016. Mixed stock analysis of Lake Michigan’s lake whitefish Coregonus clupeaformis commercial fishery. J. Great Lakes Res. 42: 660–667.
Auer N.A. 1996. Importance of habitat and migration to sturgeons with emphasis on lake sturgeon. Can. J. Fish. Aquat. Sci. 53(S1): 152–160.
Auer, N.A. 1999a. Lake sturgeon: a unique and imperiled species in the Great Lakes. In Great Lakes Fisheries Policy and Management: A Binational Perspective. Edited by C.P. Ferreri and W.W. Taylor. Michigan State University Press, East Lansing, Mich. pp. 515–538.
Auer N.A. 1999b. Population characteristics and movements of lake sturgeon in the Sturgeon River and Lake Superior. J. Great Lakes Res. 25: 282–293.
Baker, J.P. 1980. The distribution, ecology, and management of the lake sturgeon (Acipenser fulvescens Rafinesque) in Michigan. Fisheries Research Report No. 1883. Michigan Department of Natural Resources, Ann Arbor, Mich.
Bauer S. and Hoye B.J. 2014. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science, 344: 1242552.
Beacham T.D., Candy J.R., McIntosh B., MacConnachie C., Tabata A., Kaukinen K., et al. 2005. Estimation of stock composition and individual identification of sockeye salmon on a Pacific Rim basis using microsatellite and major histocompatibility complex variation. Trans. Am. Fish. Soc. 134: 1124–1146.
Beacham T.D., McIntosh B., MacConnachie C., Miller K.M., Withler R.E., and Varnavskaya N. 2006. Pacific Rim population structure of sockeye salmon as determined from microsatellite analysis. Tran. Am. Fish. Soc. 135: 174–187.
Beacham T.D., Jonsen K., McIntosh B., Sutherland B.J.G., Willis D., Lynch C., and Wallace C. 2020. Large-scale parentage-based tagging and genetic stock identification applied in assessing mixed-stock fisheries and hatchery brood stocks for coho salmon in British Columbia, Canada. Can. J. Fish. Aquat. Sci. 77(9): 1505–1517.
Beamish F.W.H., Jebbink J.A., Rossiter A., and Noakes D.I.G. 1996. Growth strategy of juvenile lake sturgeon (Acipenser fulvescens) in a northern river. Can. J. Fish. Aquat. Sci. 53(3): 481–489.
Bjorndal K.A. and Bolten A.B. 2008. Annual variation in source contributions to a mixed stock: implications for quantifying connectivity. Mol. Ecol. 17: 2185–2193.
Bolker B.M., Okuyama T., Bjorndal K.A., and Bolten A.B. 2007. Incorporating multiple mixed stocks in mixed stock analysis: “many-to-many” analyses. Mol. Ecol. 16: 685–695.
Bott K., Scribner K.T., Kornely G., Donofrio M., and Elliott R.F. 2009. Mixed-stock analysis of lake sturgeon harvest mixtures and from adjoining open-waters of western Lake Michigan. N. Am. J. Fish. Manage. 29: 1636–1643.
Bradbury I.R., Hamilton L.C., Sheehan T.F., Chaput G., Robertson M.J., Dempson J.B., et al. 2016. Genetic mixed-stock analysis disentangles spatial and temporal variation in composition of the West Greenland Atlantic Salmon fishery. ICES J. Mar. Sci. 73: 2311–2331.
Brenden T.O., Scribner K.T., Bence J.R., Tsehaye I., Kanefsky J., Vandergoot C.S., and Fielder D.G. 2015. Genetic stock identification of spawning populations contributing to the Saginaw Bay, Lake Huron recreational walleye fishery. N. Am. J. Fish. Manage. 35: 567–577.
Brenden T.O., Tsehaye I., Bence J.R., Kanefsky J., and Scribner K.T. 2018. Indexing recruitment for source populations contributing to mixed fisheries by incorporating age in genetic stock identification models. Can. J. Fish. Aquat. Sci. 75(6): 934–954.
Brooks J.L., Chapman J.M., Barkley A.N., Kessel S.T., Hussey N.E., Hinch S.G., et al. 2019. Biotelemetry informing management: case studies exploring successful integration of biotelemetry data into fisheries and habitat management. Can. J. Fish. Aquat. Sci. 76(7): 1238–1252.
Bruch R.M., Haxton T.J., Koenigs R., Welsh A., and Kerr S.J. 2016. Status of lake sturgeon (Acipenser fulvescens Rafinesque 1817) in North America. J. Appl. Ichthyol. 32: 162–190.
Cadrin S.X. 2000. Advances in morphometric identification of fishery stocks. Rev. Fish Biol. Fish. 10: 91–112.
Cadrin S.X. 2020. Defining spatial structure for fishery stock assessment. Fish. Res. 221: 105397.
Caroffino D.C., Sutton T.M., Elliott R.F., and Donofrio M.C. 2010. Early life stage mortality rates of lake sturgeon in the Peshtigo River, Wisconsin. N. Am. J. Fish. Manage. 30: 295–304.
Chandler R.B. and Clark J.D. 2014. Spatially explicit integrated population models. Methods Ecol. Evol. 5: 1351–1360.
Colborne S.F., Hondorp D.H., Holbrook C.M., Lowe M.R., Boase J.C., Chiotti J.A., et al. 2020. Sequence analysis and acoustic tracking of individual lake sturgeon identify multiple patterns of river–lake habitat use. Ecosphere, 10(12): 295–304.
Cooke S.J., Bunt C.M., Hamilton S.J., Jennings C.A., Pearson M.P., Cooperman M.S., and Markle D.F. 2005. Threats, conservation strategies, and prognosis for suckers (Catostomidae) in North America: insights from regional case studies of a diverse family of non-game fishes. Biol. Conserv. 121: 317–331.
Cooke S.J., Martins E.G., Struthers D.P., Gutowsky L.F.G., Power M., Doka S.E., et al. 2016. A moving target — incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations. Environ. Monit. Assess. 188: 239–257.
Dammerman K.J., Steibel J.P., and Scribner K.T. 2015. Genetic and environmental components of phenotypic and behavioral trait variation during lake sturgeon (Acipenser fulvescens) early ontogeny. Environ. Biol. Fish. 98: 1659–1670.
Dammerman K.J., Steibel J.P., and Scribner K.T. 2016. Increases in the mean and variability of thermal regimes result in differential phenotypic responses among genotypes during early ontogenetic stages of lake sturgeon (Acipenser fulvescens). Evol. Appl. 9: 1258–1270.
Dammerman K., Webb M., and Scribner K.T. 2019. The influence of reproductive timing on female reproductive success and ovarian quality determined using plasma testosterone concentrations in lake sturgeon (Acipenser fulvescens). Can. J. Fish. Aquat. Sci. 76(7): 1147–1160.
Debevec E.M., Gates R.B., Masuda M., Pella J., Reynolds J., and Seeb L.W. 2000. SPAM (version 3.2): statistics program for analysis of mixtures. J. Hered. 91: 509–510.
DeHaan P.W., Libants S.V., Elliott R.F., and Scribner K.T. 2006. Genetic population structure of remnant lake sturgeon populations in the upper Great Lakes basin. Trans. Am. Fish. Soc. 135: 1478–1492.
Donofrio M.C., Scribner K.T., Baker E.A., Kanefsky J., Tsehaye I., and Elliott R.F. 2018. Telemetry and genetic data characterize lake sturgeon breeding ecology and spawning site fidelity in Green Bay rivers of Lake Michigan. J. Appl. Ichthyol. 34: 302–313.
DuFour M.R., May C.J., Roseman E.F., Ludsin S.A., Vandergoot C.S., Pritt J.J., et al. 2015. Portfolio theory as a management tool to guide conservation and restoration of multi-stock fish populations. Ecosphere, 6: art296.
Eggold, B., Baumgartner, M., Fajfer, S., Holtgren, M., Baker, E., Elliott, R., and Holleback, M., 2012. Lake sturgeon rehabilitation using streamside rearing facilities [online]. Available from https://www.glft.org/documents/671-glft_final_-_proj_2005-671.
Elliott, R.F., and Gunderman, B. 2008. Assessment of Remnant Lake Sturgeon Populations in the Green Bay Basin, 2002-2006. Final Report to the Great Lakes Fishery Trust. Project No. 2001.113/2004.610.
Euclide P.T., MacDougall T., Robinson J.M., Faust M.D., Wilson C.C., Chen K.-U., et al. 2021. Mixed-stock analysis in the age of genomics: rapture genotyping enables evaluation of 1 stock-specific exploitation in a freshwater fish population with weak genetic structure. Evol. Appl. 14(5): 1403–1420.
Fabrizio, M.C. 2005. Experimental design and sampling strategies for mix-stock analysis. In Stock Identification Methods: Applications in Fishery Science. Edited by S.X. Cadrin, K.D. Friedland, and J.R. Waldman. Elsevier, Academic Press, New York. pp. 467–498.
Fogarty M.J. 1993. Recruitment in randomly varying environments. ICES J. Mar. Sci. 50: 247–260.
Fournier D.A., Skaug H.J., Ancheta J., Ianelli J., Magnusson A., Maunder M.N., et al. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27: 233–249.
Forsythe P.S., Crossman J.A., Bello N.M., Baker E.A., and Scribner K.T. 2012. Individual-based analyses reveal high repeatability in timing and location of reproduction in lake sturgeon (Acipenser fulvescens). Can. J. Fish. Aquat. Sci. 69(1): 60–72.
Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html.
Gunderman, B.J., and Elliott, R.F. 2004. Assessment of remnant lake sturgeon populations in the Green Bay Basin, 2002–2003. Great Lakes Fishery Trust Final Report.
Harkness, W.J.K., and Dymond, J.R. 1961. The lake sturgeon: the history of its fishery and problems of conservation. Ontario Department of Lands and Forests, Fish and Wildlife Branch, Toronto, Ont.
Harris B.S., Ruetz C.R. III, Wieten A.C., Altenritter M.E., and Smith K.M. 2017. Characteristics of lake sturgeon Acipenser fulvescens Rafinesque, 1817 in a tributary of Lake Michigan: Status of the Muskegon River population. J. Appl. Ichthyol. 33: 338–346.
Hay-Chmielewski, E.M., and Whelan, G.E. (Editors). 1997. Lake sturgeon rehabilitation strategy. Fisheries Division Special Report 18. Michigan Department of Natural Resources, Fisheries Division, Lansing, Mich.
Hayes, D., and D. Caroffino. 2010. Michigan DNR Lake Sturgeon Rehabilitation Strategy. Final Report.
Hilborn, R., and Walters, C.J. 1992. Quantitative fisheries stock assessment: choice, dynamics, and uncertainty. Chapman and Hall, New York.
Hjort J. 1914. Fluctuations in the great fisheries of northern Europe: viewed in the light of biological research. Rapp. Proc. V.-Reun. Cons. Int. Explor. Mer, 20: 1–228.
Holey, M., Baker, E.A., Thuemler, T., and Elliott, R.F. 2000. Research and assessment needs to restore lake sturgeon in the Great Lakes. Workshop Results, Muskegon, Michigan. Tech. Report. Great Lakes Fishery Trust, Lansing, Mich.
Holtgren J.M., Ogren S.A., Paquet A.J., and Fajfer S. 2007. Design of a portable streamside rearing facility for lake sturgeon. N. Am. J. Aquacult. 69: 317–323.
Homola J.J., Scribner K.T., Elliott R.F., Donofrio M.C., Kanefsky J., Smith K.M., and McNair J.N. 2012. Genetically-derived estimates of contemporary natural straying rates and historical gene flow among Lake Michigan lake sturgeon populations. Tran. Am. Fish. Soc. 141: 1374–1388.
Houston J.J. 1987. Status of the Lake Sturgeon Acipenser fulvescens in Canada. Can. Field Nat. 101: 171–185.
Kalinowski S.T. 2004. Genetic polymorphism and mixed-stock fisheries analysis. Can. J. Fish. Aquat. Sci. 61(7): 1075–1082.
Kazyak D.C., White S.L., Lubinski B.A., Johnson R., and Eackles M. 2021. Stock composition of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) encountered in marine and estuarine environments on the U.S. Atlantic Coast. Conserv. Genet. 22: 767–781.
Kessel S.T., Hondorp D.W., Holbrook C.M., Boase J.C., Chiotti J.A., Thomas M.V., et al. 2018. Divergent migration within lake sturgeon (Acipenser fulvescens) populations: multiple distinct patterns exist across an unrestricted migration corridor. J. Anim. Ecol. 87: 259–273.
King T.L., Lubinski B.A., and Spidle A.P. 2001. Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv. Genet. 2: 103–119.
Knights B.C., Vallazza J.M., Zigler S.J., and Dewey M.R. 2002. Habitat and movement of lake sturgeon in the upper Mississippi River system, USA. Tran. Am. Fish. Soc. 131: 507–522.
Koljonen M.-L., Masuda M., Kallio-Nyberg I., Koskiniemi J., and Saloniemi I. 2021. Large inter-stock differences in catch size-at-age of mature Atlantic salmon observed by using genetic individual origin assignment from catch data. PLoS ONE, 16(4): e0247435.
Labonne J. and Gaudin P. 2005. Exploring population dynamics patterns in a rare fish, Zingel asper, through capture–mark–recapture methods. Conserv. Biol. 19: 463–472.
Landsman S.J., Nguyen V.M., Gutowsky L.F.G., Gobin J., Cook K.V., Binder T.R., et al. 2011. Fish movement and migration studies in the Laurentian Great Lakes: research trends and knowledge gaps. J. Great Lakes Res. 37: 365–379.
Larson D.L., Kimmel J.G., Hegna J., Riedy J., Baker E.A., and Scribner K.T. 2020. Male lake sturgeon (Acipenser fulvescens) migratory and spawning behaviors are associated with sperm quality and reproductive success. Can. J. Fish. Aquat. Sci. 77(12): 1943–1959.
Li Y., Bence J.R., and Brenden T.O. 2015. An evaluation of alternative assessment approaches for intermixing fish populations: a case study with Great Lakes lake whitefish. ICES J. Mar. Sci. 72: 70–81.
Li Y., Bence J.R., Zhang Z., and Ebener M.P. 2017. Why do lake whitefish move long distances in Lake Huron? Bayesian variable selection of factors explaining fish movement distance. Fish. Res. 195: 169–179.
Ludsin S.A., DeVanna K.M., and Smith R.E.H. 2014. Physical–biological coupling and the challenge of understanding fish recruitment in freshwater lakes. Can. J. Fish. Aquat. Sci. 71(5): 775–794.
McQuown E.C., Sloss B.L., Sheehan R.J., Rodzen J., Tranah G.J., and May B. 2000. Microsatellite analysis of genetic variation in sturgeon: new primer sequences for Scaphirhynchus and Acipenser. Tran. Am. Fish. Soc. 129: 1380–1388.
McQuown E., Gall G.A.E., and May B. 2002. Characterization and inheritance of six microsatellite loci in lake sturgeon. Tran. Am. Fish. Soc. 131: 299–307.
Moran B.M. and Anderson E.C. 2019. Bayesian inference from the conditional genetic stock identification model. Can. J. Fish. Aquat. Sci. 76(4): 551–560.
Myers R., Mertz A.G., and Bridson J. 1997. Spatial scales of interannual recruitment variations of marine, anadromous, and freshwater fish. Can. J. Fish. Aquat. Sci. 54(6): 1400–1407.
Naiman R.J., Bilby R.E., Schindler D.E., and Helfield J.M. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems, 5: 399–417.
Pella J. and Masuda M. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fish. Bull. 99: 151–197.
Peterson D.L., Vecsei P., and Jennings C.A. 2007. Ecology and biology of the lake sturgeon: a synthesis of current knowledge of a threatened North American Acipenseridae. Rev. Fish Biol. Fish. 17: 59–76.
Prince D.J., O’Rourke S.M., Thompson T.Q., Ali O.A., Lyman H.S., Saglam I.K., Hotaling T.J., et al. 2017. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci. Adv. 3: e1603198.
Quinn, T.J., II, and Deriso, R.B. 1999. Quantitative fish dynamics. Oxford University Press, New York.
R Core Team. 2018. R: a language and environment for statistical computing. Vienna, Austria.
Rannala B. and Mountain J.L. 1997. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. U.S.A. 94: 9197–9201.
Reynolds J.H. and Templin W.D. 2004. Detecting specific populations in mixtures. Environ. Biol. Fish. 69: 233–243.
Ricker W.E. 1954. Stock and recruitment. J. Fish. Res. Bd. Can. 11: 559–623.
Rousset F. 2008. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Res. 8: 103–106.
Rogers, K.B., and White, G.C. 2007. Analysis of movement and habitat use from telemetry data. In Analysis and Interpretation of Freshwater Fisheries Data. Edited by C.S. Guy and M.L. Brown. American Fisheries Society, Bethesda, Md. pp. 625–676.
Rusak J.A. and Mosindy T. 1997. Seasonal movements of lake sturgeon in Lake of the Woods and the Rainy River, Ontario. Can. J. Zool. 75(3): 383–395.
Savoy T. and Pacileo D. 2003. Movements and important habitats of subadult Atlantic sturgeon in Connecticut waters. Tran. Am. Fish. Soc. 132: 1–8.
Schwartz M.K., Luikart G., and Waples R.S. 2007. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22: 25–33.
Schindler D.E., Hilborn R., Chasco B., Boatright C.P., Quinn T.P., Rogers L.A., and Webster M.S. 2010. Population diversity and the portfolio effect in an exploited species. Nature, 465: 609–612.
Scribner K.T., Tsehaye I., Brenden T., Stott W., Kanefsky J., and Bence J. 2018. Hatchery strain contributions to emerging wild lake trout populations in Lake Huron. J. Hered. 109: 675–688.
Shaklee J.B., Beacham T.D., Seeb L.W., and White B.A. 1999. Managing fisheries using genetic data: case studies from four species of Pacific salmon. Fish. Res. 43: 45–78.
Stabile J., Waldman J.R., Parauka F., and Wirgin I. 1996. Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrhinchus desotoi) based on restriction fragment length polymorphism and sequence analysis of mitochondrial DNA. Genetics, 144: 767–775.
Stephenson R.L. 1999. Stock complexity in fisheries management: a perspective of emerging issues related to population sub-units. Fish. Res. 43: 247–249.
Trenham P.C., Shaffer H.B., Koenig W.D., and Stromberg M.R. 2000. Life history and demographic variation in the California tiger salamander (Ambystoma californiense). Copeia, 2000: 365–377.
Tsehaye I., Brenden T.O., Bence J.R., Liu W., Scribner K.T., Kanefsky J., et al. 2016. Combining genetics with age/length data to estimate consistent changes in year-class strength of spawning populations contributing to admixtures, with application to Lake Michigan lake sturgeon. Fish. Res. 173: 236–249.
Tucker S.R., Houghton C.J., Harris B.S., Elliott R.F., Donofrio M.C., and Forsythe P.S. 2021. Reproductive status of a remnant Lake sturgeon (Acipenser fulvescens) population: spawning and larval drift in the lower Fox River, Wisconsin. River Res Appl. 37(9): 1265–1278.
United States Environmental Protection Agency, Office of Water. 1990. The Green Bay Mass Balance Project.
Vandergoot C.S. and Brenden T.O. 2014. Spatially-varying population demographics and fishery characteristics of Lake Erie walleye (Sander vitreus) inferred from a long-term tag-recovery study. Tran. Am. Fish. Soc. 143: 188–204.
Walters C.J. and Juanes F. 1993. Recruitment limitation as a consequence of natural selection for use of restricted feeding habitats and predation risk taking by juvenile fishes. Can. J. Fish. Aquat. Sci. 50(10): 2058–2070.
Webb M.A.H., Van Eenennaam J.P., Crossman J.A., and Chapman F.A. 2019. A partial guide for assigning sex and stage of maturity in sturgeons and paddlefish. J. Appl. Ichthyol. 35: 169–186.
Welsh A.B., Blumberg M., and May B. 2003. Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol. Ecol. Notes, 3: 47–55.
Weir B.S. and Cockerham C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358–1370.
Whitlock R., Mäntyniemi S., Palm S., Koljonen M.-L., Dannewitz J., and Östergren J. 2018. Integrating genetic analysis of mixed populations with a spatially explicit population dynamics model. Methods Ecol. Evol. 9: 1017–1035.
Wooley C.M. and Crateau E.J. 1985. Movement, microhabitat, exploitation, and management of Gulf of Mexico sturgeon, Apalachicola River, Florida. N. Am. J. Fish. Manage. 5: 590–605.

Supplementary Material

Supplementary data (cjfas-2021-0006suppla.pdf)

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 79Number 4April 2022
Pages: 652 - 669

History

Received: 8 January 2021
Accepted: 10 September 2021
Published online: 28 September 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Kim T. Scribner scribne3@msu.edu
Department of Fisheries and Wildlife, 480 Wilson Rd., Michigan State University, East Lansing, MI 48824, USA.
Department of Integrative Biology, 252 Farm Lane, Michigan State University, East Lansing, MI 48824, USA.
Ecology, Evolution, and Behavior Program, Michigan State University, 103 Giltner Hall, 293 Farm Lane, East Lansing, MI 48824, USA.
Travis O. Brenden
Department of Fisheries and Wildlife, 480 Wilson Rd., Michigan State University, East Lansing, MI 48824, USA.
Robert Elliott
United States Fish and Wildlife Service, 2661 Scott Tower Drive, New Franken, WI 54229, USA.
Michael Donofrio
Wisconsin Department of Natural Resources, 101 North Ogden Road, Peshtigo, WI 54157, USA.
Kristin Bott
Department of Fisheries and Wildlife, 480 Wilson Rd., Michigan State University, East Lansing, MI 48824, USA.
Jeannette Kanefsy
Department of Fisheries and Wildlife, 480 Wilson Rd., Michigan State University, East Lansing, MI 48824, USA.
Jared J. Homola
Department of Fisheries and Wildlife, 480 Wilson Rd., Michigan State University, East Lansing, MI 48824, USA.
Iyob Tsehaye*
Department of Fisheries and Wildlife, 480 Wilson Rd., Michigan State University, East Lansing, MI 48824, USA.
James R. Bence
Department of Fisheries and Wildlife, 480 Wilson Rd., Michigan State University, East Lansing, MI 48824, USA.
Ecology, Evolution, and Behavior Program, Michigan State University, 103 Giltner Hall, 293 Farm Lane, East Lansing, MI 48824, USA.
Edward Baker
Michigan Department of Natural Resources Marquette Fisheries Research Station, 488 Cherry Creek Rd., Marquette, MI 48955, USA.
Nancy Auer
Department of Biology, Michigan Technological University, Houghton, MI 49931, USA.

Notes

*
Present address: Wisconsin Department of Natural Resources, 2801 Progress Road, Madison, WI 53716, USA.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. First Isolation of a Herpesvirus (Family Alloherpesviridae) from Great Lakes Lake Sturgeon (Acipenser fulvescens)
2. Identification of High‐Occupancy Areas and Movement Dynamics of Age‐0 Lake Sturgeon in the Lower Fox River, Wisconsin
3. Lake Sturgeon Movement after Trap and Transfer around Two Dams on the Menominee River, Wisconsin–Michigan

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media