Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Spatially overlapping salmon species have varied population response to early life history mortality from increased peak flows

Publication: Canadian Journal of Fisheries and Aquatic Sciences
9 December 2021

Abstract

In the Pacific Northwest, USA, climate change is expected to result in a shift in average hydrologic conditions and increase variability. The relative vulnerabilities to peak flow changes among salmonid species within the same basin have not been widely evaluated. We assessed the impacts of predicted increases in peak flows on four salmonid populations in the Chehalis River basin. Coupling observations of peak flows, emissions projections, and multi-stage Beverton–Holt matrix-type life cycle models, we ran 100-year simulations of spawner abundance under baseline, mid-century, and late-century climate change scenarios. Coho (Oncorhynchus kisutch) and spring Chinook salmon (Oncorhynchus tshawytscha) shared the highest projected increase in interannual variability (SD = ±15%). Spring Chinook salmon had the greatest reduction in median spawner abundance (–13% to –15%), followed by coho and fall Chinook salmon (–7% to –9%), then steelhead (Oncorhynchus mykiss) (–4%). Our results show that interspecies and life history variability within a single basin is important to consider. Species with diverse age structures are partially buffered from population variability, which may increase population resilience to climate change.

Résumé

Il est prévu que, dans la région du Pacific Northwest (États-Unis), les changements climatiques entraîneront un changement des conditions hydrologiques moyennes et une plus grande variabilité. Les vulnérabilités relatives aux variations des débits de pointe de différentes espèces de salmonidés dans un même bassin n’ont pas été largement évaluées. Nous avons évalué les impacts des augmentations projetées des débits de pointe sur quatre populations de salmonidés dans le bassin de la rivière Chehalis. En jumelant des observations des débits de pointe, des projections d’émissions et des modèles matriciels de Beverton–Holt à plusieurs étapes du cycle biologique, nous avons effectué des simulations sur 100 ans de l’abondance de géniteurs dans des scénarios climatiques de référence, du milieu du siècle et de la fin du siècle. Les saumons cohos (Oncorhynchus kisutch) et les saumons chinooks (Oncorhynchus tshawytscha) du printemps présentent tous deux la plus grande augmentation de la variabilité interannuelle (ÉT = ±15 %). Les saumons chinooks du printemps montrent la plus importante diminution de l’abondance médiane de géniteurs (de –13 % à –15 %), suivis des saumons cohos et des saumons chinooks de l’automne (de –7 % à –9 %), puis des truites arc-en-ciel anadromes (Oncorhynchus mykiss) (–4 %). Nos résultats démontrent qu’il importe de tenir compte de la variabilité interspécifique et des cycles biologiques à l’intérieur d’un même bassin. La variabilité des populations d’espèces présentant une diversité de structures d’âges est partiellement atténuée, ce qui peut accroître la résilience de ces espèces dans un contexte de changements climatiques. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Abatzoglou J.T. and Brown T.J. 2012. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 32(5): 772–780.
Anchor QEA. 2014. Aquatic Species Enhancement Plan. Prepared for Chehalis Basin Work Group. Available from https://chehalisbasinstrategy.com/wp-content/uploads/2015/09/Aquatic-Species-Restoration-Program-Report_Final.pdf.
Arthaud D.L., Greene C.M., Guilbault K., and Morrow J.V. 2010. Contrasting life-cycle impacts of stream flow on two Chinook salmon populations. Hydrobiologia, 655(1): 171–188.
Battin J., Wiley M.W., Ruckelshaus M.H., Palmer R.N., Korb E., Bartz K.K., and Imaki H. 2007. Projected impacts of climate change on salmon habitat restoration. Proc. Natl. Acad. Sci. U.S.A. 104(16): 6720–6725.
Beechie T. and Bolton S. 1999. An Approach to Restoring Salmonid Habitat-forming Processes in Pacific Northwest Watersheds. Fisheries, 24(4): 6–15.
Beechie T., Buhle E., Ruckelshaus M., Fullerton A., and Holsinger L. 2006. Hydrologic regime and the conservation of salmon life history diversity. Biol. Conserv. 130(4): 560–572.
Beechie, T.J., Moir, H., and Pess, G. 2008. Hierarchical physical controls on salmonid spawning location and timing. In Salmonid Spawning Habitat in Rivers: Physical Controls, Biological Responses, and Approaches to Remediation. Edited by D.A. Sear and P. DeVries. Symposium 65. American Fisheries Society, Bethesda, Md. pp. 83–102.
Beechie T.J., Sear D.A., Olden J.D., Pess G.R., Buffington J.M., Moir H., Roni P., and Pollock M.M. 2010. Process-based Principles for Restoring River Ecosystems. BioScience, 60(3): 209–222.
Beechie T., Imaki H., Greene J., Wade A., Wu H., Pess G., et al. 2013. Restoring salmon habitat for a changing climate: restoring salmon habitat for a changing climate. River Res. Appl. 29: 939–960.
Beechie T., Fogel C., Nicol C., and Timpane-Padgham B. 2021a. A process-based assessment of landscape change and salmon habitat losses in the Chehalis River basin, USA. PLoS ONE, 16(11): e0258251.
Beechie, T.J., Nicol, C., Fogel, C., Jorgensen, J., Thompson, J., Seixas, G., Chamberlin, J., Hall, J., Timpane-Padgham, B., Kiffney, P., and Kubo, S. 2021b. Modeling Effects of Habitat Change and Restoration Alternatives on Salmon in the Chehalis River Basin Using a Salmonid Life-Cycle Model. Northwest Fisheries Science Center (U.S.).
Buffington, J.M. 2012. Changes in channel morphology over human time scales. In Gravel-Bed Rivers. Edited by M. Church, P.M. Biron, and A.G. Roy. John Wiley & Sons, Ltd, Chichester, UK. pp. 433–463.
Cederholm, C.J., Reid, L.M., and Salo, E.O. 1981. Cumulative effects of logging road sediment on salmonid populations in the Clearwater River, Jefferson County, Washington. In Proceedings of the Conference Salmon-Spawning Gravel: A Renewable Resource in the Pacific Northwest?, Seattle, Wash., 6–7 October 1980.
Crozier L.G., Zabel R.W., and Hamlet A.F. 2008. Predicting differential effects of climate change at the population level with life-cycle models of spring Chinook Salmon: population-specific effects of climate change. Glob. Change Biol. 14(2): 236–249.
Crozier L.G., McClure M.M., Beechie T., Bograd S.J., Boughton D.A., Carr M., et al. 2019. Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem. PLoS ONE, 14(7): e0217711.
Crozier L.G., Burke B.J., Chasco B.E., Widener D.L., and Zabel R.W. 2021. Climate change threatens Chinook salmon throughout their life cycle. Commun. Biol. 4(1): 222.
DeVries P. 1997. Riverine salmonid egg burial depths: review of published data and implications for scour studies. Can. J. Fish. Aquat. Sci. 54(8): 1685–1698.
Eaton B.C. and Church M. 2007. Predicting downstream hydraulic geometry: a test of rational regime theory. J. Geophys. Res. 112(F3).
Flynn, K., Kirby, W.H., and Hummel, P.R. 2006. User’s manual for program PeakFQ, annual flood-frequency analysis using Bulletin 17B guidelines. Techniques and Methods, US Geological Survey.
Garcia R.A., Cabeza M., Rahbek C., and Araujo M.B. 2014. Multiple dimensions of climate change and their implications for biodiversity. Science, 344(6183): 1247579.
Goode J.R., Buffington J.M., Tonina D., Isaak D.J., Thurow R.F., Wenger S., et al. 2013. Potential effects of climate change on streambed scour and risks to salmonid survival in snow-dominated mountain basins: climate change effects on streambed scour. Hydrol. Process. 27(5): 750–765.
Greene C.M., Jensen D.W., Pess G.R., Steel E.A., and Beamer E. 2005. Effects of environmental conditions during stream, estuary, and ocean residency on Chinook salmon return rates in the Skagit River, Washington. Trans. Am. Fish. Soc. 134(6): 1562–1581.
Hoffnagle T.L., Carmichael R.W., Frenyea K.A., and Keniry P.J. 2008. Run timing, spawn timing, and spawning distribution of hatchery- and natural-origin spring Chinook salmon in the Imnaha River, Oregon. North Am. J. Fish. Manage. 28(1): 148–164.
Interagency Advisory Committee on Water. 1982. Guidelines for determining flood flow frequency. US Department of Interior, Reston, Va.
Isaak, D.J., Young, M.K., Tait, C., Duffield, D., Nagel, D.E., and Groce, M.C. 2018. Chapter 5: Effects of Climate Change on Native Fish and Other Aquatic Species. Climate Change Vulnerability and Adaptation in the Intermountain Region [Part 1]. Gen. Tech. Rep. RMRS-GTR-375. Edited by J.E. Halofsky, D.L. Peterson, J.J. Ho, N.J. Little, and L.A. Joyce. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colo. pp. 89–111.
Jacobson, R.B., Lindner, G., and Bitner, C. 2015. The role of floodplain restoration in mitigating flood risk, Lower Missouri River, USA. In Geomorphic Approaches to Integrated Floodplain Management of Lowland Fluvial Systems in North America and Europe. Springer New York. pp. 203–243.
Jensen D.W., Steel E.A., Fullerton A.H., and Pess G.R. 2009. Impact of fine sediment on egg-to-fry survival of Pacific salmon: a meta-analysis of published studies. Rev. Fish. Sci. 17(3): 348–359.
Jorgensen J.C., Nicol C., Fogel C., and Beechie T.J. 2021. Identifying the potential of anadromous salmonid habitat restoration with life cycle models. PLoS ONE, 16(9): e0256792.
Kinnison M.T., Bentzen P., Unwin M.J., and Quinn T.P. 2002. Reconstructing recent divergence: evaluating nonequilibrium population structure in New Zealand Chinook salmon. Mol. Ecol. 11(4): 739–754.
Lisi P.J., Schindler D.E., Bentley K.T., and Pess G.R. 2013. Association between geomorphic attributes of watersheds, water temperature, and salmon spawn timing in Alaskan streams. Geomorphology, 185: 78–86.
Mantua N., Tohver I., and Hamlet A. 2010. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Clim. Change, 102(1–2): 187–223.
Mauger, G., Lee, S.-Y., Bandaragoda, C., Serra, Y., and Won, J. 2016. Effect of Climate Change on the Hydrology of the Chehalis Basin. Report prepared for Anchor QEA, LLC. Climate Impacts Group, University of Washington, Seattle, Wash.
McAllister L.S., Peniston B.E., Leibowitz S.G., Abbruzzese B., and Hyman J.B. 2000. A synoptic assessment for prioritizing wetland restoration efforts to optimize flood attenuation. Wetlands, 20(1): 70–83.
McConnaha, W., Walker, J., Dickman, K., and Yelin, M., 2017. Chehalis Basin Strategy: analysis of salmonid habitat potential to support the Chehalis Basin programmatic environmental impact statement. Prepared by ICF Portland, Oregon, for Anchor QEA, Seattle, Washington. Available from https://chehalisbasinstrategy.com/wp-content/uploads/2015/04/EDT-Report-and-Appendix_final.pdf.
Montgomery D.R., Buffington J.M., Peterson N.P., Schuett-Hames D., and Quinn T.P. 1996. Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface mobility and embryo survival. Can. J. Fish. Aquat. Sci. 53(5): 1061–1070.
Morbey, Y.E., and Hendry, A.P. 2008. Adaptation of salmonids to spawning habitats. In Salmonid Spawning Habitat in Rivers: Physical Controls, Biological Responses, and Approaches to Remediation. Symposium 65. American Fisheries Society, Bethesda, Md.
Moussalli E. and Hilborn R. 1986. Optimal stock size and harvest rate in multistage life history models. Can. J. Fish. Aquat. Sci. 43(1): 135–141.
Pacifici M., Foden W.B., Visconti P., Watson J.E.M., Butchart S.H.M., Kovacs K.M., et al. 2015. Assessing species vulnerability to climate change. Nat. Clim. Change, 5(3): 215–224.
Pess G.R., Quinn T.P., Gephard S.R., and Saunders R. 2014. Re-colonization of Atlantic and Pacific rivers by anadromous fishes: linkages between life history and the benefits of barrier removal. Rev. Fish Biol. Fish. 24(3): 881–900.
Quinn T.P. and Adams D.J. 1996. Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology, 77(4): 1151–1162.
Quinn T.P., Unwin M.J., and Kinnison M.T. 2000. Evolution of temporal isolation in the wild: Genetic divergence in timing of migration and breeding by introduced Chinook salmon populations. Evolution, 54(4): 1372–1385.
Ricker W.E. 1954. Stock and recruitment. J. Fish. Res. Bd. Can. 11(5): 559–623.
Scheuerell M.D., Hilborn R., Ruckelshaus M.H., Bartz K.K., Lagueux K.M., Haas A.D., and Rawson K. 2006. The Shiraz model: a tool for incorporating anthropogenic effects and fish–habitat relationships in conservation planning. Can. J. Fish. Aquat. Sci. 63(7): 1596–1607.
Sholtes J.S. and Doyle M.W. 2011. Effect of channel restoration on flood wave attenuation. J. Hydraul. Eng., ASCE, 137(2): 196–208.
Sloat M.R., Reeves G.H., and Christiansen K.R. 2017. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska. Glob. Change Biol. 23(2): 604–620.
Thomas H. and Nisbet T.R. 2007. An assessment of the impact of floodplain woodland on flood flows. Water Environ. J. 21(2): 114–126.
Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., et al. 2004. Extinction risk from climate change. Nature, 427(4): 145–148.
Timpane-Padgham B.L., Beechie T., and Klinger T. 2017. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration. PLoS One, 12(3): e0173812.
Tohver I.M., Hamlet A.F., and Lee S.-Y. 2014. Impacts of 21st-century climate change on hydrologic extremes in the Pacific Northwest Region of North America. J. Am. Water Resour. Assoc. 50(6): 1461–1476.
van Vuuren D.P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., et al. 2011. The representative concentration pathways: an overview. Clim. Change, 109(1): 5.
Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., et al. 2002. Ecological responses to recent climate change. Nature, 416(6879): 389–395.
Ward E.J., Anderson J.H., Beechie T.J., Pess G.R., and Ford M.J. 2015. Increasing hydrologic variability threatens depleted anadromous fish populations. Glob. Change Biol. 21(7): 2500–2509.
Wiens J.J. 2016. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14(12): e2001104.
WSDNR. 2017. WA State Boundary. Washington State Department of Natural Resources (WSDNR). Available from https://data-wadnr.opendata.arcgis.com/documents/wa-state-boundary-download/about.
Zabel R.W., Scheuerell M.D., McClure M.M., and Williams J.G. 2006. The interplay between climate variability and density dependence in the population viability of Chinook salmon. Conserv. Biol. 20(1): 190–200.
Zimmerman M.S., Kinsel C., Beamer E., Connor E.J., and Pflug D.E. 2015. Abundance, survival, and life history strategies of juvenile Chinook salmon in the Skagit River, Washington. Trans. Am. Fish. Soc. 144(3): 627–641.

Supplementary Material

Supplementary data (cjfas-2021-0038suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 79Number 2February 2022
Pages: 342 - 351

History

Received: 16 February 2021
Accepted: 2 August 2021
Version of record online: 9 December 2021

Notes

This work is free of all copyright and may be freely built upon, enhanced, and reused for any lawful purpose without restriction under copyright or database law.

Permissions

Request permissions for this article.

Authors

Affiliations

Colin L. Nicol [email protected]
Ocean Associates, Inc., under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
Jeffrey C. Jorgensen
Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
Caleb B. Fogel
Ocean Associates, Inc., under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
Britta Timpane-Padgham
A.I.S., Inc., Seattle, Wash., USA, under contract to National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Wash., USA.
Timothy J. Beechie
Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Who spawns where? Temperature, elevation, and discharge differentially affect the distribution of breeding by six Pacific salmonids within a large river basin
2. A Comprehensive Review of the Impacts of Climate Change on Salmon: Strengths and Weaknesses of the Literature by Life Stage
3. How does habitat restoration influence resilience of salmon populations to climate change?
4. Chapter 27 : Northwest. Fifth National Climate Assessment

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media