Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Fine-scale behavior of red snapper (Lutjanus campechanus) around bait: approach distances, bait plume dynamics, and effective fishing area

Publication: Canadian Journal of Fisheries and Aquatic Sciences
1 July 2021

Abstract

The behavior of fish around bait is poorly understood despite it being important for the fish catching process and estimating relative abundance. We used a fine-scale acoustic positioning system to quantify the movements of 26 red snapper (Lutjanus campechanus) around 120 bait deployments in 2019 at a natural reef site (∼37-m deep) in North Carolina, USA. There were 39 instances of tagged red snapper approaching bait during four baiting days, some of which approached due to apparent sensory cues (28%), while most approached incidentally (72%). Tagged red snapper approached bait from initial distances of 1 to 1147 m (median = 27 m; mean = 86 m), and took 0–77 min (mean = 22 min) to approach. Fish were more likely to approach bait if they were located close to, and down-current of, the bait at deployment. Our estimated effective fishing area of 2290 m2 (within which >50% of red snapper responded to bait) could be used along with video counts and other information to estimate densities of red snapper.

Résumé

Le comportement des poissons autour d’appâts demeure mal compris, malgré son importance pour le processus de capture et l’estimation de l’abondance relative de poissons. Nous utilisons un système de positionnement acoustique à échelle fine pour quantifier les déplacements de 26 vivaneaux rouges (Lutjanus campechanus) aux alentours de 120 déploiements d’appâts effectués en 2019 dans un site récifal naturel (∼37 m de profondeur) en Caroline du Nord (États-Unis). Trente-neuf cas où des vivaneaux rouges se sont approchés d’appâts ont été recensés durant quatre jours d’appâtage, certaines de ces approches étant motivées par des signaux sensoriels apparents (28 %), alors que la plupart étaient le fruit du hasard (72 %). Les vivaneaux rouges marqués ont parcouru des distances initiales de 1 à 1147 m (valeur médiane = 27 m; moyenne = 86 m) et ont pris de 0 à 77 min (moyenne = 22 min) pour s’approcher d’appâts. Les poissons étaient plus susceptibles de s’approcher d’appâts s’ils se trouvaient à proximité ou en aval courant de l’appât au moment de son déploiement. La superficie de pêche effective estimée de 2290 m2 (dans laquelle >50 % des vivaneaux rouges ont réagi aux appâts) pourrait être utilisée de concert avec des dénombrements vidéo et d’autres renseignements pour estimer la densité de vivaneaux rouges. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Alós J., Palmer M., Balle S., and Arlinghaus R. 2016. Bayesian state-space modelling of conventional acoustic tracking provides accurate descriptors of home range behavior in a small-bodied coastal fish species. PLoS One, 11: e0154089.
Bacheler N.M. and Shertzer K.W. 2020. Catchability of reef fish species in traps is strongly affected by water temperature and substrate. Mar. Ecol. Prog. Ser. 642: 179–190.
Bacheler N.M., Berrane D.J., Mitchell W.A., Schobernd C.M., Schobernd Z.H., Teer B.Z., and Ballenger J.C. 2014. Environmental conditions and habitat characteristics influence trap and video detection probabilities for reef fish species. Mar. Ecol. Prog. Ser. 517: 1–14.
Bacheler N.M., Whitfield P.E., Muñoz R.C., Harrison B.B., Harms C.A., and Buckel C.A. 2015. Movement of invasive adult lionfish Pterois volitans using telemetry: importance of controls to estimate and explain variable detection probabilities. Mar. Ecol. Prog. Ser. 527: 205–220.
Bacheler N.M., Shertzer K.W., Buckel J.A., Rudershausen P.J., and Runde B.J. 2018. Behavior of gray triggerfish Balistes capriscus around baited fish traps determined from fine-scale acoustic tracking. Mar. Ecol. Prog. Ser. 606: 133–150.
Bacheler N.M., Shertzer K.W., Cheshire R.T., and MacMahan J.H. 2019. Tropical storms influence the movement behavior of a demersal oceanic fish species. Sci. Rep. 9: 1481.
Bacheler N.M., Shertzer K.W., Runde B.J., Rudershausen P.J., and Buckel J.A. 2021. Environmental conditions, diel period, and fish size influence the horizontal and vertical movements of red snapper. Sci. Rep. 11: 9580.
Bohaboy E.C., Guttridge T.L., Hammerschlag N., Van Zinnicq Bergmann M.P.M., and Patterson W.F. 2020. Application of three-dimensional acoustic telemetry to assess the effects of rapid recompression on reef fish discard mortality. ICES J. Mar. Sci. 77: 83–96.
Bozec Y.M., Kulbicki M., Laloë F., Mou-Tham G., and Gascuel D. 2011. Factors affecting the detection distances of reef fish: implications for visual counts. Mar. Biol. 158: 969–981.
Burnham, K.P., and Anderson, D.R. 2002. Model selection and multi model inference: a practical information-theoretic approach. 2nd ed. Springer. New York.
Burns, K.M., Koenig, C.C., and Coleman, F.C. 2002. Evaluation of multiple factors involved in release mortality of undersized red grouper, gag, red snapper and vermilion snapper. Mote Marine Laboratory Technical Report No. 790. Available from https://grunt.sefsc.noaa.gov/P_QryLDS/download/MF649_Burns_etal_2002.pdf?id=LDS [Accessed 22 July 2020].
Cowan J.H. Jr., Grimes C.B., Patterson W.F. III, Walters C.J., Jones A.C., Lindberg W.J., et al. 2011. Red snapper management in the Gulf of Mexico: science- or faith-based? Rev. Fish Biol. Fish. 21: 187–204.
Dance M.A., Moulton D.L., Furey N.B., and Rooker J.R. 2016. Does transmitter placement or species affect detection efficiency of tagged animals in biotelemetry research? Fish. Res. 183: 80–85.
DeBose J.L. and Nevitt G.A. 2008. The use of odors at different spatial scales: comparing birds with fish. J. Chem. Ecol. 34: 867–881.
Dittman A.H. and Quinn T.P. 1996. Homing of Pacific salmon: mechanisms and ecological basis. J. Exp. Biol. 199: 83–91.
Eggers D.M., Rickard N.A., Chapman D.G., and Whitney R.R. 1982. A methodology for estimating area fished for baited hooks and traps along a ground line. Can. J. Fish. Aquat. Sci. 39(3): 448–453.
Espinoza M., Farrugia T.J., Webber D.M., Smith F., and Lowe C.G. 2011. Testing a new aquatic telemetry technique to quantify long-term, fine-scale movements of aquatic animals. Fish. Res. 108: 364–371.
Freitas C., Olsen E.M., Knutsen H., Albretsen J., and Moland E. 2016. Temperature-associated habitat selection in a cold-water marine fish. J. Anim. Ecol. 85: 628–637.
Gardiner, J.M., Hueter, R.E., Maruska, K.P., Sisneros, J.A., Casper, B.M., Mann, D.A., and Desmski, L.S. 2012. Sensory physiology and behavior of elasmobranchs. In Biology of Sharks and Their Relatives. 2nd ed. Edited by J.C. Carrier, J.A. Musick, and M.R. Heithaus. CRC Press, Boca Raton, Fla.
Harley S.J., Myers R.A., and Dunn A. 2001. Is catch-per-unit-effort proportional to abundance? Can. J. Fish. Aquat. Sci. 58(9): 1760–1772.
Harvey E.S., Cappo M., Butler J.J., Hall N., and Kendrick G.A. 2007. Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Mar. Ecol. Prog. Ser. 350: 245–254.
Hastie, T.J., and Tibshirani, R.J. 1990. Generalized additive models. Chapman & Hall, London, UK.
Herbig J.L. and Szedlmayer S.T. 2016. Movement patterns of gray triggerfish, Balistes capriscus, around artificial reefs in the northern Gulf of Mexico. Fish. Manag. Ecol. 23: 418–427.
Jepsen N., Thorstad E.B., Havn T., and Lucas M.C. 2015. The use of external electronic tags on fish: an evaluation of tag retention and tagging effects. Anim. Biotelem. 3: 49.
Jernakoff P. and Phillips B.F. 1988. Effects of a baited trap on the foraging movements of juvenile western rock lobsters Panulirus cygnus George. Mar. Freshwater Res. 39: 185–192.
Kimura D.K. and Somerton D.A. 2006. Review of statistical aspects of survey sampling for marine fisheries. Rev. Mar. Fish. 14: 245–283.
Lees K.J., Mill A.C., Skerritt D.J., Robertson P.A., and Fitzsimmons C. 2018. Movement patterns of a commercially important, free-ranging marine invertebrate in the vicinity of a bait source. Anim. Biotelem. 6: 8.
Løkkeborg S. and Fernö A. 1999. Diel activity pattern and food search behavior in cod, Gadus morhua. Env. Biol. Fish. 54: 345–353.
Løkkeborg S., Bjordal Å., and Fernö A. 1989. Responses of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) to baited hooks in the natural environment. Can. J. Fish. Aquat. Sci. 46(9): 1478–1483.
Maunder M.N. and Piner K.R. 2015. Contemporary fisheries stock assessment: many issues still remain. ICES J. Mar. Sci. 72: 7–18.
Maunder M.N. and Punt A.E. 2004. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70: 141–159.
Miller R.J. 1975. Density of commercial spider crab, Chionoecetes opilio, and calibration of effective area fished per trap using bottom photography. J. Fish. Res. Bd. Can. 32(6): 761–768.
Miller R.J. and Hunte W. 1987. Effective area fished by Antillean fish traps. Bull. Mar. Sci. 40: 484–493.
Mitamura H., Arai N., Sakamoto W., Mitsunaga Y., Tanaka H., Mukai Y., et al. 2005. Role of olfaction and vision in homing behaviour of black rockfish Sebastes inermis. J. Exp. Mar. Biol. Ecol. 322: 123–134.
National Research Council of the National Academies. 2011. Guide for the care and use of laboratory animals. 8th ed. The National Academies Press, Washington, D.C.
Patterson W.F. III. 2007. A review of movement in Gulf of Mexico red snapper: implications for population structure. Am. Fish. Soc. Symp. 60: 221–235.
Patterson W.F. III, Watterson J.C., Shipp R.L., and Cowan J.H. Jr. 2001. Movement of tagged red snapper in the northern Gulf of Mexico. Trans. Am. Fish. Soc. 130: 533–545.
Piraino M.N. and Szedlmayer S.T. 2014. Fine-scale movements and home ranges of red snapper around artificial reefs in the northern Gulf of Mexico. Trans. Am. Fish. Soc. 143: 988–998.
Plenderleith M., Oosterhout C.V., Robinson R.L., and Turner G.F. 2005. Female preference for conspecific males based on olfactory cues in a Lake Malawi cichlid fish. Biol. Lett. 1: 411–414.
Priede I.G., Bagley P.M., Smith A., Creasey S., and Merrett N.R. 1994. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. UK, 74: 481–498.
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://r-project.org.
Rowcliffe J.M., Carbone C., Kays R., Kranstauber B., and Jansen P.A. 2012. Bias in estimating animal travel distance: the effect of sampling frequency. Methods Ecol. Evol. 3: 653–662.
Runde B.J., Bacheler N.M., Shertzer K.W., Rudershausen P.J., Sauls B., and Buckel J.A. 2021. Discard mortality of red snapper released with descender devices in the U.S. South Atlantic. Mar. Coast. Fish. 13: 478–495.
Sainte-Marie B. and Hargrave B.T. 1987. Estimation of scavenger abundance and distance of attraction to bait. Mar. Biol. 94: 431–443.
Schobernd Z.H., Bacheler N.M., and Conn P.B. 2014. Examining the utility of alternative video monitoring metrics for indexing reef fish abundance. Can. J. Fish. Aquat. Sci. 71(3): 464–471.
SEDAR. 2021. SEDAR 73 South Atlantic red snapper stock assessment report. SEDAR, North Charleston, S.C. Available from http://sedarweb.org/docs/sar/SEDAR73_SARedSnapper_FullSAR_V3_0.pdf.
Shertzer K.W., Bacheler N.M., Pine W.E. III, Runde B.J., Buckel J.A., Rudershausen P.J., and MacMahan J.H. 2020. Estimating population abundance at a site in the open ocean: combining information from conventional and telemetry tags with application to gray triggerfish (Balistes capriscus). Can. J. Fish. Aquat. Sci. 77(1): 34–43.
Skajaa K., Fernö A., Løkkeborg S., and Haugland E.K. 1998. Basic movement pattern and chemo-oriented search towards baited pots in the edible crab (Cancer pagurus L.). Hydrobiology, 371/372: 143–153.
Skerritt D.J., Robertson P.A., Mill A.C., Polunin N.V.C., and Fitzsimmons C. 2015. Fine-scale movement, activity patterns and home-ranges of European lobster Homarus gammarus. Mar. Ecol. Prog. Ser. 536: 203–219.
Smith C.R. 1985. Food for the deep sea: utilization, dispersal, and flux of nekton falls at the Santa Catalina Basin floor. Deep-Sea Res. 32: 417–442.
Smith S. and Tremblay J.M. 2003. Fishery-independent trap surveys of lobster (Homarus americanus): design considerations. Fish. Res. 62: 65–75.
Stiansen S., Fernö A., Furevik D., Jørgensen T., and Løkkeborg S. 2010. Horizontal and vertical odor plume trapping of red king crabs explains the different efficiency of top- and side-entrance pot designs. Trans. Am. Fish. Soc. 139: 483–490.
Stieglitz T.C. and Dujon A.M. 2017. A groundwater-fed coastal inlet as habitat for the Caribbean queen conch Lobatus gigas — an acoustic telemetry and space use analysis. Mar. Ecol. Prog. Ser. 571: 139–152.
Stoner A.W. 2004. Effects of environmental variables on fish feeding ecology: implications for the performance of baited fishing gear and stock assessment. J. Fish Biol. 65: 1445–1471.
Topping D.T. and Szedlmayer S.T. 2011a. Home range and movement patterns of red snapper (Lutjanus campechanus) on artificial reefs. Fish. Res. 112: 77–84.
Topping D.T. and Szedlmayer S.T. 2011b. Site fidelity, residence time and movements of red snapper Lutjanus campechanus estimated with long-term acoustic monitoring. Mar. Ecol. Prog. Ser. 437: 183–200.
Watson W.H. III, Golet W., Scopel D., and Jury S. 2009. Use of ultrasonic telemetry to determine the area of bait influence and trapping area of American lobster, Homarus americanus, traps. New Zeal. J. Mar. Freshw. Res. 43: 411–418.
Westerberg H. and Westerberg K. 2011. Properties of odour plumes from natural baits. Fish. Res. 110: 459–464.
Williams-Grove L.J. and Szedlmayer S.T. 2016a. Acoustic positioning and movement patterns of red snapper, Lutjanus campechanus, around artificial reefs in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 553: 233–251.
Williams-Grove L.J. and Szedlmayer S.T. 2016b. Mortality estimates for red snapper based on ultrasonic telemetry in the northern Gulf of Mexico. N. Am. J. Fish. Manag. 36: 1036–1044.
Williams-Grove L.J. and Szedlmayer S.T. 2017. Depth preferences and three-dimensional movements of red snapper, Lutjanus campechanus, on an artificial reef in the northern Gulf of Mexico. Fish. Res. 190: 61–70.
Willis T.J., Millar R.B., and Babcock R.C. 2000. Detection of spatial variability in relative density of fishes: comparison of visual census, angling, and baited underwater video. Mar. Ecol. Prog. Ser. 198: 249–260.
Wood, S.N. 2006. Generalized additive models: an introduction with R. Chapman & Hall/CRC. Boca Raton, Fla.
Wood S.N. 2011. Fast stable restricted maximum likelihood for marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. Methodol. 73: 3–36.
Zhou S. and Shirley T.C. 1997. Behavioural responses of red king crabs to crab pots. Fish. Res. 30: 177–189.

Information & Authors

Information

Published In

cover image Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences
Volume 79Number 3March 2022
Pages: 458 - 471

History

Received: 26 February 2021
Accepted: 23 June 2021
Accepted manuscript online: 1 July 2021
Version of record online: 1 July 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Nathan M. Bacheler [email protected]
Southeast Fisheries Science Center, National Marine Fisheries Service, Beaufort, NC 28516, USA.
Brendan J. Runde
Department of Applied Ecology, Center for Marine Sciences and Technology, North Carolina State University, Morehead City, NC 28557, USA.
Kyle W. Shertzer
Southeast Fisheries Science Center, National Marine Fisheries Service, Beaufort, NC 28516, USA.
Jeffrey A. Buckel
Department of Applied Ecology, Center for Marine Sciences and Technology, North Carolina State University, Morehead City, NC 28557, USA.
Paul J. Rudershausen
Department of Applied Ecology, Center for Marine Sciences and Technology, North Carolina State University, Morehead City, NC 28557, USA.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Applying mark-resight, count, and telemetry data to estimate effective sampling area and fish density with stationary underwater cameras
2. Spatiotemporal dynamics and habitat use of red snapper (Lutjanus campechanus) on the southeastern United States Atlantic continental shelf
3. Artificial structure selection by economically important reef fishes at North Carolina artificial reefs
4. A review and synthesis of the benefits, drawbacks, and considerations of using traps to survey fish and decapods
5. Calibration of fish counts in video surveys: a case study from the Southeast Reef Fish Survey
6. Comparison of video and traps for detecting reef fishes and quantifying species richness in the continental shelf waters of the southeast USA

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Fisheries and Aquatic Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media