research-article

New regression estimators in forest inventories with two-phase sampling and partially exhaustive information: a design-based Monte Carlo approach with applications to small-area estimation

Publication: Canadian Journal of Forest Research22 October 2013https://doi.org/10.1139/cjfr-2013-0181

Abstract

We consider two-phase sampling schemes where one component of the auxiliary information is known in every point (“wall-to-wall”) and a second component is available only in the large sample of the first phase, whereas the second phase yields a subsample with the terrestrial inventory. This setup is of growing interest in forest inventory thanks to the recent advances in remote sensing, in particular, the availability of LiDAR data. We propose a new two-phase regression estimator for global and local estimation and derive its asymptotic design-based variance. The new estimator performs better than the classical regression estimator. Furthermore, it can be generalized to cluster sampling and two-stage tree sampling within plots. Simulations and a case study with LiDAR data illustrate the theory.

Résumé

Cet article propose un nouvel estimateur pour les inventaires forestiers utilisant des plans de sondage à deux phases pour lesquels l’information auxiliaire consiste en une première composante exhaustive connue en chaque point et une seconde composante connue seulement aux points du grand échantillon de la première phase. La deuxième phase consiste en un sous-échantillon des points de la première phase dans lesquels l’inventaire terrestre est effectué. Ce contexte est appelé à jour un rôle croissant grâce aux développements récents dans l’aquisition de données par télédétection. Nous proposons un nouvel estimateur par regression, aussi bien pour l’estimation globale que locale, et nous donnons sa variance asymptotique sous le plan de sondage. Le nouvel estimateur peut être adapté aux inventaire par satellites et avec tirage double des arbres au niveau de la placette terrestre. Un exemple utilisant des données LiDAR et des simulations illustrent la théorie. Le nouvel estimateur a de meilleures performance que l’estimateur de régression classique.

References

Gregoire T. and Dyer M. 1989. Model fitting under patterned heterogeneity of variance. For. Sci. 35: 105–125.
Heinimann H. and Breschan J. 2012. Pre-harvest assessment based on LiDAR data. Croat. J. For. Eng. 33: 169–180.
Hill, A. 2013. Comparison of small area estimators in forest inventories using airborne laser-scanning data. Technical report, ETH Zurich, Department of Environmental Systems Science and University of Göttingen, M.Sc. thesis. Available from http://e-collection.library.ethz.ch.
Huber, P.J. 1967. The behaviour of maximum likelihood estimates under nonstandard conditions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, California, 21 June to 18 July 1965 and 27 December 1965 to 7 January 1966. Vol 1: Statistics. University of California Press, Berkeley, Calif. pp. 221–233.
Hyyppä J., Kelle O., Lehikoinen M., and Inkinen M. 2001. A segmentation-based method to retrieve stem volume estimates from 3-D height models produced by laser scanner. IEEE Trans. Geosci. Remote Sens. 39: 969–975.
Mandallaz, D. 2008. Sampling techniques for forest inventories. Chapman and Hall, Boca Raton, Fla.
Mandallaz, D. 2012. Design-based properties of small-area estimators in forest inventory with two-phase sampling. ETH Zurich, Department of Environmental Systems Science, Tech. rep. Available from http://e-collection.library.ethz.ch.
Mandallaz D. 2013a. Design-based properties of some small-area estimators in forest inventory with two-phase sampling. Can. J. For. Res. 43(5): 441–449.
Mandallaz, D. 2013b. Regression estimators in forest inventories with two-phase sampling and partially exhaustive information with application to small-area estimation. ETH Zurich, Department of Environmental Systems Science, Tech. rep. Available from http://e-collection.library.ethz.ch.
Mandallaz D. and Massey A. 2012. Comparison of estimators in one-phase two-stage Poisson sampling in forest inventories. Can. J. For. Res. 42(10): 1865–1871.
Morsdorf F., Meier E., Kötz B., Itten K.I., Dobbertine M., and Allgöwer B. 2004. LiDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens. Environ. 92: 353–362.
Särndal, C., Swenson, B., and Wretman, J. 2003. Model-assisted survey sampling. Springer Series in Statistics, New York.
Steinmann K., Ginzler C., and Lanz A. 2011. Kombination von Landesforstinventar- und Fernerkundungsdaten für Kleingebietsschätzungen. Schweiz. Z. Forstwes. 162: 290–299.

Information & Authors

Information

Published In

Canadian Journal of Forest Research cover image
Canadian Journal of Forest Research
Volume 43Number 112013
Pages: 1023 - 1031

History

Received: 8 May 2013
Accepted: 7 August 2013
Published online: 22 October 2013

Permissions

Request permissions for this article.

Authors

Affiliations

Daniel Mandallaz
Chair of Land Use Engineering, Department of Environmental Systems Science, ETH Zurich, CH 8092 Zurich, Switzerland.
Jochen Breschan
Chair of Land Use Engineering, Department of Environmental Systems Science, ETH Zurich, CH 8092 Zurich, Switzerland.
Andreas Hill
Chair of Land Use Engineering, Department of Environmental Systems Science, ETH Zurich, CH 8092 Zurich, Switzerland.

Metrics & Citations

Metrics

Citations

View Options

Media

Figures

Other

Tables

Share

Information & Authors
Metrics & Citations
Other Metrics
 
Cite As


 
Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.


 
Cited by
1. Population and Stand-Level Inference in Forest Inventory with Penalized Splines
2. Airborne-laser-scanning-derived auxiliary information discriminating between broadleaf and conifer trees improves the accuracy of models for predicting timber volume in mixed and heterogeneously structured forests
3. A Tutorial on Model-Assisted Estimation with Application to Forest Inventory
4. Semi-parametric regression when some (expensive) covariates are missing by design
5. LiDAR Applications to Forest-Water Interactions
6. An application niche for finite mixture models in forest resource surveys
7. Combining canopy height and tree species map information for large-scale timber volume estimations under strong heterogeneity of auxiliary data and variable sample plot sizes
8. A Double-Sampling Extension of the German National Forest Inventory for Design-Based Small Area Estimation on Forest District Levels
9. Lidar supported estimators of wood volume and aboveground biomass from the Danish national forest inventory (2012–2016)
10. Area-level analysis of forest inventory variables
11. A new prediction-based variance estimator for two-stage model-assisted surveys of forest resources
12. Multidimensional scaling of first-return airborne laser echoes for prediction and model-assisted estimation of a distribution of tree stem diameters
13. Design-based regression estimation of net change for forest inventories
14. Sampling strategies for estimating forest cover from remote sensing-based two-stage inventories
15. Comparison of classical, kernel-based, and nearest neighbors regression estimators using the design-based Monte Carlo approach for two-phase forest inventories
16. Arguments for a model-dependent inference?
17. Integrating remote sensing and past inventory data under the new annual design of the Swiss National Forest Inventory using three-phase design-based regression estimation
18. National forest inventories in the service of small area estimation of stem volume
19. Accuracy Assessment of Timber Volume Maps Using Forest Inventory Data and LiDAR Canopy Height Models
20. A three-phase sampling extension of the generalized regression estimator with partially exhaustive information
Share Options
Share the article link
Share on social media
Get Access
Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe to csp

Click on the button below to subscribe now

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View Options
Tables
References