Warm, dry conditions inhibit aspen growth, but tree growth and size predict mortality risk in the southwestern United States

Publication: Canadian Journal of Forest Research
28 May 2020

Abstract

Widespread, rapid aspen (Populus tremuloides Michx.) mortality since the beginning of the 21st century, sometimes called sudden aspen decline (SAD), has been documented in many locations across North America, but it has been particularly pronounced in the southwestern United States. We investigated the relationship among aspen growth, mortality, and climate across three forest types in northern Arizona using cross-dated tree-ring samples from 126 live and 132 dead aspens. Aspen growth was negatively correlated with warm temperatures and positively associated with higher precipitation. Using survival analysis techniques to investigate the links between aspen mortality, tree traits, and climatic conditions, we found that tree traits played a larger role in mortality risk than climate factors. Trees with larger diameters, older trees, and trees with faster growth rates over the past 50 years had a reduced risk of mortality. Management actions aimed at maintaining the most vigorous, fastest growing aspen in the region could help mitigate the impacts of a warmer, drier future.

Résumé

La mortalité rapide et généralisée du peuplier faux-tremble (Populus tremuloides Michx.) depuis le début du 21e siècle, parfois appelée le déclin soudain du peuplier faux-tremble, a été documentée à plusieurs endroits à travers l’Amérique du Nord, mais le déclin a été particulièrement sévère dans le sud-ouest des États-Unis. Nous avons étudié la relation entre la croissance du peuplier faux-tremble, la mortalité et le climat dans trois types de forêts du nord de l’Arizona à l’aide d’échantillons d’anneaux de croissance synchronisés provenant de peupliers faux-trembles, 126 morts et 132 vivants. La croissance du peuplier faux-tremble était négativement corrélée avec les températures chaudes et positivement associée à des précipitations élevées. À l’aide de techniques d’analyse de survie pour étudier les liens entre la mortalité du peuplier faux-tremble, les caractéristiques des arbres et les conditions climatiques, nous avons trouvé que les caractéristiques des arbres jouent un plus grand rôle dans le risque de mortalité que les facteurs climatiques. Les arbres avec un plus gros diamètre, les arbres plus vieux et les arbres avec un taux de croissance plus élevé au cours des 50 dernières années avaient un faible risque de mortalité. Des pratiques d’aménagement visant à conserver les peupliers faux-trembles les plus vigoureux, ceux qui croissent le plus rapidement dans la région pourraient contribuer à atténuer les impacts d’un climat futur plus chaud et plus sec. [Traduit par la Rédaction]

Get full access to this article.

View all available purchase options and get full access to this article.

References

Adams H.D., Zeppel M.J.B., Anderegg W.R.L., Hartmann H., Landhäusser S.M., Tissue D.T., et al. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1: 1285–1291.
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259: 660–684.
Allison, P.D. 1995. Survival analysis using the SAS system, a practical guide. SAS Institute Inc., Cary, North Carolina.
Anderegg L.D.L. and HilleRisLambers J. 2016. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Glob. Chang. Biol. 22: 1029–1045.
Anderegg W.R.L., Kane J.M., and Anderegg L.D.L. 2012. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 3: 30–36.
Anderegg W.R.L., Anderegg L.D.L., Kerr K.L., and Trugman A.T. 2019. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Chang. Biol. 25(11): 3793–3802.
Bell D.M., Bradford J.B., and Lauenroth W.K. 2014. Forest stand structure, productivity, and age mediate climatic effects on aspen decline. Ecology, 95: 2040–2046.
Bell D.M., Bradford J.B., and Lauenroth W.K. 2015. Scale dependence of disease impacts on quaking aspen (Populus tremuloides) mortality in the southwestern United States. Ecology, 96: 1835–1845.
Bigler C. and Bugman H. 2004. Predicting the time of tree death using dendrochronological data. Ecol. Appl. 14: 902–914.
Biondi F. and Waikul K. 2004. DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 30: 303–311.
Breshears D., Adams H., Eamus D., McDowell N., Law D., Will R., Williams A., and Zou C. 2013. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4: 266.
Burnham, K.P., and Anderson, D.R. 1998. Model selection and inference: a practical information-theoretic approach. Springer-Verlag, New York.
Clement M.J., Harding L.E., Lucas R.W., and Rubin E.S. 2019. The relative importance of biotic and abiotic factors influencing aspen recruitment in Arizona. For. Ecol. Manage. 441: 32–41.
Cook, E.R. 1985. A time series analysis approach to tree-ring standardization. Ph.D. dissertation, University of Arizona, Tucson, Ariz.
Cortini F., Comeau P.G., Strimbu V.C., Hogg T.E., Bokalo M., and Huang S. 2017. Survival functions for boreal tree species in northwestern North America. For. Ecol. Manage. 402: 177–185.
Cox, D.R. and Oakes, D. 1984. Analysis of survival data. Chapman and Hall, London, U.K.
Cryer D.H. and Murray J.E. 1992. Aspen regeneration and soils. Rangelands, 14: 223–226.
Dixon G.B. and DeWald L.E. 2015. Microsatellite survey reveals possible link between triploidy and mortality of quaking aspen in Kaibab National Forest, Arizona. Can. J. For. Res. 45: 1369–1375.
Dudley M.M., Negron J., Tisserat N.A., Shepperd W.D., and Jacobi W.R. 2015. Influence of climate on the growth of quaking aspen (Populus tremuloides) in Colorado and southern Wyoming. Can. J. For. Res. 45: 1546–1563.
Fairweather, M.L., Geils, B.W., and Manthei, M. 2008. Aspen decline on the Coconino National Forest. In Proceedings of the 55th Western International Forest Disease Work Conference, Sedona, AZ. Oregon Department of Forestry, Salem, Oregon. pp. 53–62
Frey B.R., Lieffers V.J., Hogg E.H., and Landhausser S.M. 2004. Predicting landscape patterns of aspen dieback: mechanisms and knowledge gaps. Can. J. For. Res. 34: 1379–1390.
Ganey J.L., White G.C., Jenness J.S., and Vojta S.C. 2015. Mark–recapture estimation of snag standing rates in northern Arizona mixed-conifer and ponderosa pine forests. J. Wildl. Manage. 79: 1369–1377.
Gitlin A.R., Sthultz C.M., Bowker M.A., Stumpf S., Paxton K.L., Kennedy K., et al. 2006. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conserv. Biol. 20: 1477–1486.
Greenwood S., Ruiz-Benito P, Martínez-Vilalta J., Lloret F., Kitzberger T., Allen C.D., et al. 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20: 539–553.
Griffin D.H., Schaedle M., Devit M.J., and Manion P.D. 1991. Clonal variation of Populus tremuloides responses to diurnal drought stress. Tree Physiol. 8: 297–304.
Hanna P. and Kulakowski D. 2012. The influences of climate on aspen dieback. For. Ecol. Manage. 274: 91–98.
Hogg E.H. and Michaelian M. 2015. Factors affecting fall down rates of dead aspen (Populus tremuloides) biomass following severe drought in west-central Canada. Glob. Chang. Biol. 21: 1968–1979.
Hogg E.H., Brandt J.P., and Michaelian M. 2008. Impacts of a regional drought on the productivity, dieback, and biomass of western Canadian aspen forests. Can. J. For. Res. 38: 1373–1384.
Holmes R.L. 1983. Computer-assisted quality control in tree-ring dating and measurements. Tree-Ring Bull. 43: 69–78.
Huang C.-Y. and Anderegg L.D.L. 2012. Large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests. Glob. Chang. Biol. 18: 1016–1027.
Hungerford, R.D., Nemani, R.R., Running, S.W., and Coughlan, J.C. 1989. MTCLIM: A mountain microclimate simulation model. USDA Forest Service, Intermountain Research Station, Ogden, Utah, GTR INT-414.
Ireland K.B., Moore M.M., Fulé P.Z., Zegler T.J., and Keane R.E. 2014. Slow lifelong growth predisposes Populus tremuloides trees to mortality. Oecologia, 175: 847–859.
Kane J.M. and Kolb T.E. 2014. Short- and long-term growth characteristics associated with tree mortality in southwestern mixed-conifer forests. Can. J. For. Res. 44: 1227–1235.
Kane J.M., Kolb T.E., and McMillin J.D. 2014. Stand-scale tree mortality factors differ by site and species following drought in southwestern mixed conifer forests. For. Ecol. Manage. 330: 171–182.
Keane, R.E., Loehman, R.A., and Holsinger, L.M. 2011. The FireBGCv2 landscape fire and succession model: a research simulation platform for exploring fire and vegetation dynamics. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, RMRS-GTR-255.
Krebill, R.G. 1972. Mortality of aspen on the Gros Ventre elk winter range. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, Res. Paper INT-129.
Lloret F., Keeling E.G., and Sala A. 2011. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120: 1909–1920.
Michaelian M., Hogg E.H., Hall R.J., and Arsenault E. 2011. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Chang. Biol. 17: 2084–2094.
Mock K.E., Callahan C.M., Islam-Faridi M.N., Shaw J.D., Rai H.S., Sanderson S.C., et al. 2012. Widespread triploidy in western North American aspen (Populus tremuloides). PLoS One, 7(10): e48406.
R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from www.R-project.org.
Rehfeldt G.E., Ferguson D.E., and Crookston N.L. 2009. Aspen, climate, and sudden decline in western U.S.A. For. Ecol. Manage. 258: 2353–2364.
SAS Institute. 2011. The SAS System for Windows, Release 9.3. SAS Institute Inc., Cary, North Carolina.
Schier, G.A., Jones, J.R., and Winokur, R.P. 1985. Vegetative regeneration. In Aspen: ecology and management in the western United States. Edited by N.V. DeByle and R.P. Winokur. USDA Forest Service, Fort Collins, Colorado, GTR RM-119. pp. 29–33.
Shepperd W.D. 2004. Techniques to restore aspen forests in the western U.S. Trans. Western Sec. Wildlife Soc. 40: 52–60.
Shepperd W.D., Smith F.W., and Pelz K.A. 2015. Group clearfell harvest can promote regeneration of aspen forests affected by sudden aspen decline in western Colorado. For. Sci. 61(5): 932–937.
Singer J.A., Turnbull R., Foster M., Bettigole C., Frey B.R., Downey M.C., et al. 2019. Sudden aspen decline: a review of pattern and process in a changing climate. Forests, 10(8): 671.
Stokes, M.A., and Smiley, T.L. 1968. An introduction to tree ring dating. University of Chicago Press, Chicago, III.
Tai X., Mackay D.S., Anderegg W.R.L, Sperry J.S., and Brooks P.D. 2017. Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern U.S.A. New Phytol. 213: 113–127.
van Mantgem P.J., Stephenson N.L., Byrne J.C., Daniels L.D., Franklin J.D., Fulé P.Z., et al. 2009. Widespread increase of tree mortality rates in the western United States. Science, 323: 521–524.
Vanderwell M.C., Caspersen J.P., and Woods M.E. 2006. Snag dynamics in partially harvested and unmanaged northern hardwood forests. Can. J. For. Res. 36: 2769–2779.
Western Regional Climate Center (WRCC). 2012. Cooperative climatatological data summaries, NOAA cooperative stations, Williams, AZ. Available from http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?az9359.
Williams A.P., Allen C.D., Millar C.I., Swetnam T.W., Michaelsen J., Still C.J., and Leavitt S.W. 2010. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl. Acad. Sci. 107: 21289–21294.
Williams A.P., Allen C.D., Macalady A.K., Griffin D., Woodhouse C.A., Meko D.M., et al. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3(3): 292–297.
Williams A.P., Cook E.R., Smerdon J.E., Cook B.I., Abatzoglou J.T., Bolles K., et al. 2020. Large contribution from anthropogenic warming to an emerging North American megadrought. Science, 368(6488): 314–318.
Worrall J.J., Egeland L., Eager T., Mask R.A., Johnson E.W., Kemp P.A., and Shepperd W.D. 2008. Rapid mortality of Populus tremuloides in southwestern Colorado, U.S.A. For. Ecol. Manage. 255: 686–696.
Worrall J.J., Marchetti S.B., Egeland L., Mask R.A., Eager T., and Howell B. 2010. Effects and etiology of sudden aspen decline in southwestern Colorado, U.S.A. For. Ecol. Manage. 260: 638–648.
Worrall J.J., Rehfeldt G.E., Hamman A., Hogg E.H., Marchetti S.B., Michaelian M., and Gray L.K. 2013. Recent declines of Populus tremuloides in North America linked to climate. For. Ecol. Manage. 299: 35–51.
Zegler T.J., Moore M.M., Fairweather M.L., Ireland K.B., and Fulé P.Z. 2012. Populus tremuloides mortality near the southwestern edge of its range. For. Ecol. Manage. 282: 196–207.

Supplementary Material

Supplementary data (cjfr-2019-0222suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 50Number 11November 2020
Pages: 1206 - 1214

History

Received: 19 June 2019
Accepted: 20 May 2020
Published online: 28 May 2020

Permissions

Request permissions for this article.

Key Words

  1. Arizona
  2. climate
  3. aspen
  4. Populus tremuloides
  5. mortality

Mots-clés

  1. Arizona
  2. climat
  3. peuplier faux-tremble
  4. Populus tremuloides
  5. mortalité

Authors

Affiliations

Kathryn B. Ireland* Kathryn.Ireland@mt.gov
School of Forestry, Northern Arizona University, P.O. Box 15018, Flagstaff, AZ 86011, USA.
Margaret M. Moore
School of Forestry, Northern Arizona University, P.O. Box 15018, Flagstaff, AZ 86011, USA.
Peter Z. Fulé
School of Forestry, Northern Arizona University, P.O. Box 15018, Flagstaff, AZ 86011, USA.
Larissa L. Yocom
Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, UT 84322, USA.
Thomas J. Zegler
New Mexico State Forestry, 2610 N. Silver St., Silver City, NM 88061, USA.

Notes

*
Present address: Geographer, Montana Department of Natural Resources and Conservation, Sage Grouse Habitat Conservation Program, 1539 Eleventh Ave., Helena, MT 59601, USA.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Temperature memory and non-structural carbohydrates mediate legacies of a hot drought in trees across the southwestern USA

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

Full Text

Open Full Text

PDF

Download PDF

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Share on social media