Editor's Choice

Increasing ground-layer plant taxonomic diversity masks declining phylogenetic diversity along a silvicultural disturbance gradient

Publication: Canadian Journal of Forest Research
28 May 2020

Abstract

Most plant diversity in temperate deciduous forests is found in the ground layer, but nearly all studies comparing plant community assembly using taxonomic, trait, and phylogenetic diversity indices are limited to woody plants. To examine the relationship between short-term ground-layer plant community assembly and disturbance severity, we leveraged a silvicultural experiment that applied a combination of harvest and site preparation treatments in a northern hardwood forest in Michigan, USA. We predicted that after two growing seasons, plant communities would be less sensitive to harvest treatments when compared with site preparation treatments that disturb the rhizosphere and modify rooting substrate. We also predicted that an increase in taxonomic diversity would accompany a decline in trait diversity and phylogenetic diversity. Instead, plant species composition responded similarly to harvest treatment and site preparation treatment. However, our measure of disturbance severity was positively correlated with both trait diversity and taxonomic diversity but negatively correlated with phylogenetic diversity, indicating that increasingly diverse traits and taxonomies along this disturbance severity gradient were comprised of more phylogenetically simple plant communities. Informed management decisions should therefore consider the underlying value of each diversity measure, as taxonomic diversity alone may not be the best metric for assessing plant community assembly.

Graphical Abstract

Résumé

La plus grande partie de la diversité végétale des forêts feuillues tempérées se trouve dans la strate près du sol, mais presque toutes les études comparant l’assemblage des communautés végétales à l’aide d’indices de diversité taxonomique, phylogénétique et caractérielle se limitent aux plantes ligneuses. Pour étudier la relation à court terme entre l’assemblage des communautés végétales de la strate près du sol et l’intensité des perturbations, nous avons utilisé une expérience sylvicole combinant des traitements de récolte et de préparation de terrain dans une forêt feuillue du nord du Michigan, aux États-Unis. Nous avons anticipé qu’après deux saisons de croissance, les communautés végétales seraient moins sensibles aux traitements de récolte qu’aux traitements de préparation de terrain qui perturbent la rhizosphère et modifient le substrat d’enracinement. Nous avons également anticipé qu’une augmentation de la diversité taxonomique serait associée à une baisse de la diversité phylogénétique et caractérielle. Nous avons plutôt observé que la composition des espèces végétales a réagi de façon similaire aux traitements de récolte et de préparation de terrain. Cependant, notre mesure de l’intensité des perturbations était positivement corrélée à la diversité taxonomique et caractérielle, mais négativement reliée à la diversité phylogénétique. Ces résultats indiquent que l’augmentation de la diversité des caractères et des taxons le long du gradient d’intensité des perturbations se traduisait par des communautés végétales plus simples sur le plan phylogénétique. Des décisions d’aménagement éclairées doivent donc tenir compte de la valeur sous-jacente de chaque mesure de diversité, puisque la seule diversité taxonomique pourrait ne pas être la meilleure mesure pour évaluer l’assemblage des communautés végétales. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Albert, D.A. 1995. Regional landscape ecosystems of Michigan, Minnesota, and Wisconsin: a working map and classification. Gen. Tech. Rep. NC-178, USDA Forest Service, North Central Forest Experiment Station, St. Paul, Minn. Northern Prairie Wildlife Research Center Online, Jamestown, N.D. Available from http://www.npwrc.usgs.gov/resource/habitat/rlandscp/index.htm.
Arroyo-Rodríguez V., Cavender-Bares J., Escobar F., Melo F.P.L., Tabarelli M., and Santos B.A. 2012. Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. J. Ecol. 100(3): 702–711.
Bal T.L., Storer A.J., and Jurgensen M.F. 2017. Evidence of damage from exotic invasive earthworm activity was highly correlated to sugar maple dieback in the Upper Great Lakes region. Biol. Invasions, 20: 151–164.
Battles J.J., Shlisky A.J., Barrett R.H., Heald R.C., and Allen-Diaz B.H. 2001. The effects of forest management on plant species diversity in a Sierran conifer forest. For. Ecol. Manage. 146:211–222.
Beatty, S.W. 2014. Habitat heterogeneity and maintenance of species in understory communities. In The herbaceous layer in forests of eastern North America. Edited by F.S. Gilliam. Oxford University Press, New York. pp. 320–229.
Bell F.W., Hunt S., Dacosta J., Sharma M., Larocque G.R., Winters J.A., and Newmaster S.G. 2014. Effects of silviculture intensity on plant diversity response patterns in young managed northern temperate and boreal forests. Écoscience, 21: 327–339.
Brundrett M. and Tedersoo L. 2019. Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytol. 221: 18–24.
Burton J.I., Mladenoff D.M., Forrester J.A., and Clayton M.K. 2014. Experimentally linking disturbance, resources and productivity to diversity in forest ground-layer plant communities. J. Ecol. 102: 1634–1648.
Cavender-Bares J., Kozak K.H., Fine P.V.A., and Kembel S.W. 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12(7): 693–715.
Chadde, S.W. 2014. Michigan flora: Upper Peninsula. Orchard Innovations, Sullivan, Indiana, USA.
De Cáceres M. and Legendre P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology, 90(12): 3566–3574.
Donoso P.J. and Nyland R.D. 2006. Interference to hardwood regeneration in northeastern North America: the effects of raspberries (Rubus spp.) following clearcutting and shelterwood methods. North. J. Appl. For. 23(4): 288–296.
Erickson M.D., Reed D.D., and Mroz G.D. 1990. Stand development and economic analysis of alternative cutting methods in northern hardwoods: 32-year results. North. J. Appl. For. 7(4): 153–158.
Faith D.P. 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61(1): 1–10.
Fox J.W. 2013. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28(2): 86–92.
Galland T., Adeux G., Dvořáková H., E-Vojtkó A., Orbán I., Lussu M., et al. 2019. Colonization resistance and establishment success along gradients of functional and phylogenetic diversity in experimental plant communities. J. Ecol. 107: 2090–2104.
Gerhold P., Pa M., Tackenberg O., Hennekens S.M., Bartish I., Schamine J.H.J., et al. 2011. Phylogenetically poor plant communities receive more alien species, which more easily coexist with natives. Am. Nat. 177(5): 668–680.
Gilliam, F.S. 2014. The herbaceous layer in forests of eastern North America. Oxford University Press, New York.
Gleason, H.A., and Cronquist, A. 1991. Manual of vascular plants of northeastern United States and adjacent Canada. 2nd ed. The New York Botanical Garden, The Bronx, New York.
Gómez-Díaz J.A., Krömer T., Kreft H., Gerold G., Carvajal-Hernández C.I., and Heitkamp F. 2017. Diversity and composition of herbaceous angiosperms along gradients of elevation and forest-use intensity. PLoS ONE, 12(8): 1–17.
Grime J.P. 1973. Competitive exclusion in herbaceous vegetation. Nature, 242(1): 344–347.
Hervé, M. 2019. RVAideMemoire: testing and plotting procedures for biostatistics. R package version 0.9-73. Available from https://cran.r-project.org/package=RVAideMemoire.
Holdsworth A.R., Frelich L.E., and Reich P.B. 2007. Effects of earthworm invasion on plant species richness in northern hardwood forests. Conserv. Biol. 21(4): 997–1008.
Jin Y. and Qian H. 2019. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography, 42(8): 1353–1359.
Kembel S.W., Cown P.D., Helmus M.R., Cornwell W.K., Morlon H., Ackerly D.D., and Blomberg C.O. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26: 1463–1464.
Kern C.C., Palik B.J., and Strong T.F. 2006. Ground-layer plant community responses to even-age and uneven-age silvicultural treatments in Wisconsin northern hardwood forests. For. Ecol. Manage. 230: 162–170.
Kern C.C., Montgomery R.A., Reich P.B., and Strong T.F. 2013. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. J. Plant Ecol. 6(1): 101–112.
Kern C.C., Montgomery R.A., Reich P.B., and Strong T.F. 2014. Harvest-created canopy gaps increase species and functional trait diversity of the forest ground-layer community. For. Sci. 60(2): 335–344.
Kern C.C., Burton J.I., Raymond P., D’Amato A.W., Keeton W.S., Royo A.A., et al. 2017. Challenges facing gap-based silviculture and possible solutions for mesic northern forests in North America. Forestry, 90(1): 4–17.
Kern C.C., Schwarzmann J., Kabrick J., Gerndt K., Boyden S., and Stanovick J.S. 2019. Mounds facilitate regeneration of light-seeded and browse-sensitive tree species after moderate-severity wind disturbance. For. Ecol. Manage. 437: 139–147.
Kotar, J., Kovach, J.A., and Burger, T.L. 2002. A Guide to forest communities and habitat types of northern Wisconsin. University of Wisconsin. Madison, Wisc.
Kraft L.S., Crow T.R., Buckley D.D., Nauertz E.A., and Zasada J.C. 2004. Effects of harvesting and deer browsing on attributes of understory plants in northern hardwood forests, Upper Michigan, USA. For. Ecol. Manage. 199: 219–230.
Laliberté, E., Legendre, P., and Shipley, B. 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. Available from https://cran.r-project.org/web/packages/FD/FD.pdf.
Landhäusser S.M. 2009. Impact of slash removal, drag scarification, and mounding on lodgepole pine cone distribution and seedling regeneration after cut-to-length harvesting on high elevation sites. For. Ecol. Manage. 258: 43–49.
Lavorel S. and Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16(5): 545–556.
Lenth, R. 2018. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.1. Available from https://cran.r-project.org/web/packages/emmeans/emmeans.pdf.
Liu B., Chen H.Y.H., and Yang J. 2018. Understory community assembly following wildfire in boreal forests: shift from stochasticity to competitive exclusion and environmental filtering. Front. Plant Sci. 9: 1854.
Mason N.W.H., Mouillot D., Lee W.G., and Wilson J.B. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1): 112–118.
Mazel F., Pennell M.W., Cadotte M.W., Diaz S., Dalla Riva, G.V., Grenyer R., et al. 2018. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9(1): 2888.
Mo X.X., Shi L.L., Zhang Y.J., Zhu H., and Slik J.W.F. 2013. Change in phylogenetic community structure during succession of traditionally managed tropical rainforest in southwest China. PLoS ONE, 8(7): 1–9.
National Oceanic and Atmospheric Administration (NOAA). 2016. Alberta, Michigan, U.S.A., weather station; data reported through 2010. Available from www.ncdc.noaa.gov/cdo-web/search [accessed 24 March 2016].
Nyland, R.D., Kenefic, L.S., Bohn, K.K., and Stout, S.L. 2016. Silviculture: concepts and applications. 3rd ed. Waveland Press, Inc., Long Grove, Ill.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D.J. et al. 2018. vegan: community ecology package. R package version 2.5-1. Available from https://cran.r-project.org/web/packages/vegan/vegan.pdf.
Pakeman R.J. 2014. Functional trait metrics are sensitive to the completeness of the species’ trait data? Methods Ecol. Evol. 5(1): 9–15.
Pec G.J., Scott N.M., Hupperts S.F., Hankin S.L., Landhäusser S.M., and Karst J. 2019. Restoration of belowground fungal communities in reclaimed landscapes of the Canadian boreal forest. Restor. Ecol. 27: 1369–1380.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team. 2018. nlme: linear and nonlinear mixed effects models. R package version 3.1-137. Available from https://cran.r-project.org/web/packages/nlme/nlme.pdf.
Pond N.C., Froese R.E., and Nagel L.M. 2014. Sustainability of the selection system in northern hardwood forests. For. Sci. 60(2): 374–381.
R Core Team. 2018. R: a language and environment for statistical computing. Version 3.5.0. R Foundation for Statistical Computing, Vienna, Austria. Available from www.R-project.org.
Roberts, M.R., and Gilliam, F.S. 2014. Response of the herbaceous layer to disturbance in eastern North America. In The herbaceous layer in forests of eastern North America. Edited by F.S. Gilliam. Oxford University Press, New York. pp. 320–229.
Shivaprakash K.N., Ramesh B.R., Umashaanker R., and Dayanandan S. 2018. Functional trait and community phylogenetic analyses reveal environmental filtering as the major determinant of assembly of tropical forest tree communities in the Western Ghats biodiversity hotspot in India. For. Ecosyst. 5(1): 25.
Smith K.J., Keeton W.S., Twery M.J., and Tobi D.R. 2008. Understory plant responses to uneven-aged forestry alternatives in northern hardwood–conifer forests. Can. J. For. Res. 38(6): 1303–1318.
Tucker C.M., Aze T., Cadotte M.W., Cantalapiedra J.L., Chisholm C., Díaz S., et al. 2019. Assessing the utility of conserving evolutionary history. Biol. Rev. 94: 1740–1760.
Webster C.R., Dickinson Y.L., Burton J.I., Frelich L.E., Jenkins M.A., Kern C.C., et al. 2018. Promoting and maintaining diversity in contemporary hardwood forests: Confronting contemporary drivers of change and the loss of ecological memory. For. Ecol. Manage. 421: 98–108.
Westoby M., Leishman M., and Lord J. 1996. Comparative ecology of seed size and dispersal. Philos. Trans. R. Soc. B Biol. Sci. 351: 1309–1318.
Williamson, M. 1996. Biological Invasions. Chapman and Hall, London, U.K.
Willis J.L., Walters M.B., and Gottschalk K.W. 2015. Scarification and gap size have interacting effects on northern temperate seedling establishment. For. Ecol. Manage. 347: 237–247.

Supplementary Material

Supplementary data (cjfr-2020-0055suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 50Number 12December 2020
Pages: 1259 - 1267

History

Received: 10 February 2020
Accepted: 7 May 2020
Published online: 28 May 2020

Permissions

Request permissions for this article.

Key Words

  1. community assembly
  2. northern hardwoods
  3. silviculture
  4. conservation
  5. functional ecology

Mots-clés

  1. assemblage des communautés
  2. feuillus nordiques
  3. sylviculture
  4. conservation
  5. écologie fonctionnelle

Authors

Affiliations

Stefan F. Hupperts stefan.hupperts@slu.se
College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA.
Christopher R. Webster
College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA.
Robert E. Froese*
College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA.
Erik A. Lilleskov
Forestry Sciences Laboratory, USDA Forest Service, Northern Research Station, 410 MacInnes Dr., Houghton, MI 49931, USA.
Amy M. Marcarelli
Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
Yvette L. Dickinson
College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA.

Notes

*
Robert E. Froese currently serves as an Associate Editor; peer review and editorial decisions regarding this manuscript were handled by Joseph Antos.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Irregular silviculture and stand structural effects on the plant community in an ancient semi-natural woodland
2. Influence of Strip Clearcuts, Deer Exclusion and Herbicide on Initial Sapling Recruitment in Northern Hardwood Forests
3. Irregular Silviculture Effects on the Plant Community in an Ancient Semi-Natural Woodland
4. Preferences for Northern Hardwood Silviculture among Family Forest Owners in Michigan’s Upper Peninsula

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media