Non-uniform growth dynamics of a dominant boreal tree species (Picea mariana) in the face of rapid climate change

Publication: Canadian Journal of Forest Research
15 September 2020

Abstract

Northwestern Canada’s boreal forest has experienced rapid warming, drying, and changes to permafrost, yet the growth responses and mechanisms driving productivity have been under-studied at broad scales. Forest responses are largely driven by black spruce (Picea mariana (Mill.) B.S.P.) — the region’s most widespread and dominant tree. We collected tree ring samples from four black spruce-dominated sites across 15° of latitude, spanning gradients in climate and permafrost. We investigated (i) differences in growth patterns, (ii) variations in climatic drivers of growth, and (iii) trends in water use efficiency (WUE) through 13C isotope analysis from 1945 to 2006. We found positive growth trends at all sites except those at mid-latitude, where rapid permafrost thaw drove declines. Annual growth was lowest at the tree limit site and highest at the tree line. Climatic drivers of these growth patterns varied; positive growth responses at the northerly sites were associated with warmer winters, whereas Δ13C trends and climate-growth responses at mid-latitude sites indicated that growth was limited by moisture availability. Δ13C signatures indicated increased WUE at the southernmost site, with no significant trends at northern sites. These results suggest that warming will increase the growth of trees at the northern extent of black spruce, but southerly areas may face drought stress if precipitation does not balance evapotranspiration.

Résumé

La forêt boréale du nord-ouest du Canada a connu un réchauffement, un assèchement et des changements rapides dans le pergélisol mais les réactions de la croissance et des mécanismes responsables de la productivité ont été peu étudiés à grande échelle. Les réactions de la forêt sont largement déterminées par l’épinette noire (Picea mariana (Mill.) B.S.P.), l’espèce d’arbre la plus dominante et la plus répandue dans cette région. Nous avons recueilli des échantillons de cernes annuels dans quatre stations dominées par l’épinette noire et réparties sur 15° de latitude avec des gradients en ce qui a trait au climat et au pergélisol. Nous avons étudié (i) les différences dans les patrons de croissance, (ii) les variations dans les facteurs climatiques qui influencent la croissance, et (iii) les tendances dans l’efficacité en matière d’utilisation de l’eau (EUE) par le biais de l’analyse isotopique du carbone (13C) de 1945 à 2006. Nous avons observé des tendances de croissance positives dans toutes les stations à l’exception de la latitude moyenne où le dégel rapide du pergélisol causait du dépérissement. La croissance annuelle était la plus faible dans la station située à la limite des arbres et la plus élevée à la limite forestière. Les facteurs climatiques responsables de ces patrons de croissance variaient; des réactions positives de la croissance dans les stations septentrionales étaient associées à des hivers plus chauds, alors que les tendances de Δ13C et les réactions de la croissance au climat dans les stations situées à la latitude moyenne indiquaient que la disponibilité de l’humidité limitait la croissance. Selon la signature de Δ13C, l’EUE augmentait dans la station la plus méridionale alors qu’on ne décelait pas de tendances significatives dans les stations septentrionales. Ces résultats indiquent que le réchauffement augmentera la croissance des arbres à la limite septentrionale de l’épinette noire mais que les régions plus au sud pourraient faire face à un stress causé par la sécheresse si la précipitation n’arrive pas à équilibrer l’évapotranspiration. [Traduit par la Rédaction]

Get full access to this article.

View all available purchase options and get full access to this article.

References

Baltzer J., Patankar R., Downey A., and Quinton W. 2013. Impacts of seasonal thaw and permafrost degradation on Picea mariana root function in a subarctic boreal peatland. Acta Hortic. 141–148.
Baltzer J.L., Veness T., Chasmer L.E., Sniderhan A.E., and Quinton W.L. 2014. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Global Change Biol. 20(3): 824–834.
Bates D., Machler M., Bolker B., and Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67: 1–48.
Bégin C., Gingras M., Savard M.M., Marion J., Nicault A., and Bégin Y. 2015. Assessing tree-ring carbon and oxygen stable isotopes for climate reconstruction in the Canadian northeastern boreal forest. Palaeogeogr. Palaeoclimatol. Palaeoecol. 423(February): 91–101.
Bonan G.B. and Shugart H.H. 1989. Environmental factors and ecological processes in boreal forests. Annu. Rev. Ecol. Syst. 20: 1–28.
Bonan G.B. and Sirois L. 1992. Air temperature, tree growth, and the northern and southern range limits to Picea mariana. J. Veg. Sci. 3: 495–506.
Brienen R.J.W., Gloor E., and Zuidema P.A. 2012. Detecting evidence for CO2 fertilization from tree ring studies: the potential role of sampling biases. Global Biogeochem. Cycles, 26(1).
Brown J.H. 1984. On the relationship between abundance and distribution of species. Am. Nat. 124(2): 255–279.
Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., and Zang, C., 2016. dplR: dendrochronology program library in R. R package version 1.6.4. Available from https://CRAN.R-project.org/package=dplR.
D’Orangeville L., Duchesne L., Houle D., Kneeshaw D., Côté B., and Pederson N. 2016. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science, 352(6292): 1452–1455.
Dracup J.A., Lee K.S., and Paulson E.G. 1980. On the definition of droughts. Water Resour. Res. 16(2): 297–302.
Drobyshev I., Simard M., Bergeron Y., and Hofgaard A. 2010. Does soil organic layer thickness affect climate-growth relationships in the black spruce boreal ecosystem? Ecosystems, 13(4): 556–574.
Farquhar G.D., Ehleringer J.R., and Hubick K.T. 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537.
Gale M.R. and Grigal D.F. 1987. Vertical root distributions of northern tree species in relation to successional status. Can. J. For. Res. 17(8): 829–834.
Girard F., Payette S., and Gagnon R. 2011. Dendroecological analysis of black spruce in lichen—spruce woodlands of the closed-crown forest zone in Eastern Canada. Ecoscience, 18(3): 279–294.
Girardin M.P., Bouriaud O., Hogg E.H., Kurz W., Zimmermann N.E., Metsaranta J.M., et al. 2016a. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl. Acad. Sci. 113(52): E8406–E8414.
Girardin M.P., Hogg E.H., Bernier P.Y., Kurz W.A., Guo X.J., and Cyr G. 2016b. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Global Change Biol. 22: 627–643.
Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., Brönnimann, S., Charabi, Y., et al. 2013. Observations: atmosphere and surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
Holmes, R.L. 2000. The dendrochronological program library. Laboratory of Tree-Ring Research, University of Arizona, Tuscan, Ariz.
Housset J.M., Girardin M.P., Baconnet M., Carcaillet C., and Bergeron Y. 2015. Unexpected warming‐induced growth decline in Thuja occidentalis at its northern limits in North America. J. Biogeogr. 42(7): 1233–1245.
Huang J., Tardif J.C., Bergeron Y., Denneler B., Berninger F., and Girardin M.P. 2010. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Global Change Biol. 16(2): 711–731.
Ma Z., Peng C., Zhu Q., Chen H., Yu G., Li W., et al. 2012. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl. Acad. Sci. U.S.A. 109(7): 2423–2427.
McCarroll D. and Loader N.J. 2004. Stable isotopes in tree rings. Quat. Sci. Rev. 23: 771–801.
McLeod, A.I. 2011. Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 2.2. Available from https://CRAN.R-project.org/package=Kendall.
NOAA National Centers for Environmental Information. 2020. Climate at a glance: global time series. Published July 2020, retrieved on July 29, 2020. Available from https://www.ncdc.noaa.gov/cag/.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. 2016. vegan: community ecology package. R package version 2.4-0. Available from https://CRAN.R-project.org/package=vegan.
Ols C., Hofgaard A., Bergeron Y., and Drobyshev I. 2016. Previous growing season climate controls the occurrence of black spruce growth anomalies in boreal forests of Eastern Canada. Can. J. For. Res. 46(5): 696–705.
Pallardy, S.G. 2008. Physiology of woody plants. 3rd ed. Academic Press, Oxford, U.K.
Patankar R., Quinton W.L., Hayashi M., and Baltzer J.L. 2015. Sap flow responses to seasonal thaw and permafrost degradation in a subarctic boreal peatland. Trees Struct. Funct. 29: 129–142.
Peng C., Ma Z., Lei X., Zhu Q., Chen H., Wang W., et al. 2011. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Change, 1(9): 467–471.
Pojar J. 1996. Environment and biogeography of the western boreal forest. For. Chron. 72(1): 51–58.
Pretzsch, H. 2005. Diversity and productivity in forests: evidence from long-term experimental plots. In Forest diversity and function: temperate and boreal systems. Edited by M. Scherer-Lorenzen, C. Körner, and E.-D. Schulze. Springer-Verlag, Berlin, Heidelberg. pp. 41–64.
Quinton W.L. and Baltzer J.L. 2013. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada). Hydrogeol. J. 21: 201–220.
R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/.
Schubert B.A. and Jahren A.H. 2015. Global increase in plant carbon isotope fractionation following the last glacial maximum caused by increase in atmospheric pCO2. Geology, 43(5): 435–438.
Silva L.C.R. and Anand M. 2013. Probing for the influence of atmospheric CO2 and climate change on forest ecosystems across biomes. Glob. Ecol. Biogeogr. 22(1): 83–92.
Silva L.C.R., Anand M., and Leithead M.D. 2010. Recent widespread tree growth decline despite increasing atmospheric CO2. PloS ONE, 5(7): e11543.
Sniderhan A.E. and Baltzer J.L. 2016. Growth dynamics of black spruce (Picea mariana) in a rapidly thawing discontinuous permafrost peatland. J. Geophys. Res. Biogeosci. 121(12): 2988–3000.
Sniderhan, A.E., and Baltzer, J.L. 2020a. Scotty Creek - PCMA - ITRDB CANA557. Available from https://www.ncdc.noaa.gov/paleo/study/26110.
Sniderhan, A.E., and Baltzer, J.L. 2020b. Inuvik - PCMA - ITRDB CANA612. Available from https://www.ncdc.noaa.gov/paleo-search/study/31112.
Sniderhan, A.E., and Baltzer, J.L. 2020c. Trail Valley Creek - PCMA - ITRDB CANA614. Available from https://www.ncdc.noaa.gov/paleo-search/study/31114.
Sniderhan, A.E., Mamet, S.D., Johnstone, J.F., and Baltzer, J.L. 2020. Southern Old Black Spruce - PCMA - ITRDB CANA613. Available from https://www.ncdc.noaa.gov/paleo-search/study/31113.
Trahan M. and Schubert B. 2016. Temperature-induced water stress in high-latitude forests in response to natural and anthropogenic warming. Global Change Biol. 22(2): 782–791.
Vaganov E.A., Hughes M.K., Kirdyanov A.V., Schweingruber F.H., and Silkin P.P. 1999. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 400: 149–151.
Van Cleve K., Oliver L., Schlentner R., Viereck L.A., and Dyrness C.T. 1983. Productivity and nutrient cycling in taiga forest ecosystems. Can. J. For. Res. 13(5): 747–766.
Viereck, L.A., and Johnston, W.F. 1990. Picea mariana (Mill.) B. S. P. Black spruce. In Silvics of North America: Vol. 1. Conifers. Edited by R. Burns and B. Honkala. USDA Forest Service Agriculture Handbook, Washington, D.C. pp. 227–237.
Walker X. and Johnstone J.F. 2014. Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest. Environ. Res. Lett. 9(6): 064016.
Warren, R.K. 2015. Examining the spatial distribution of soil moisture and its relationship to vegetation and permafrost dynamics in a subarctic permafrost peatland. M.Sc. thesis, University of Guelph.
Wilmking M. and Myers-Smith I. 2008. Changing climate sensitivity of black spruce (Picea mariana Mill.) in a peatland–forest landscape in Interior Alaska. Dendrochronologia, 25(3): 167–175.

Supplementary Material

Supplementary data (cjfr-2020-0188suppla.pdf)

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 51Number 4April 2021
Pages: 565 - 572

History

Received: 1 May 2020
Accepted: 27 August 2020
Published online: 15 September 2020

Permissions

Request permissions for this article.

Key Words

  1. Picea mariana
  2. black spruce
  3. dendrochronology
  4. stable carbon isotope
  5. climate warming

Mots-clés

  1. Picea mariana
  2. épinette noire
  3. dendrochronologie
  4. isotope stable du carbone
  5. réchauffement climatique

Authors

Affiliations

Anastasia E. Sniderhan asniderhan@wlu.ca
Department of Geography and Environmental Studies, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada.
Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5 Canada.
Steven D. Mamet
Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
Jennifer L. Baltzer
Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5 Canada.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Deciphering the black spruce response to climate variation across eastern Canada using a meta-analysis approach
2. Tree growth is connected with distribution and warming‐induced degradation of permafrost in southern Siberia
3. Unexpected greening in a boreal permafrost peatland undergoing forest loss is partially attributable to tree species turnover
4. Permafrost thaw in boreal peatlands is rapidly altering forest community composition
5. Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media