Local testing and calibration of species-specific competition indices in Sierran mixed-conifer forests: application transfer to evolving objectives

Publication: Canadian Journal of Forest Research
9 September 2020

Abstract

Forest growth processes are driven by site productivity and species functional traits, which are ultimately constrained by cumulative resource demand, resulting in competitive dynamics across successional forest communities. Historical efforts to quantify competition used density metrics or neighborhood crowding indices for yield modeling and reforestation surveys. These methods have expanded to include dendroclimatology and restoration applications that commonly assume similar competitive response across species of various functional types. We assessed the competitive indices of two focal species, Pinus lambertiana (Dougl.) and Pinus ponderosa (Dougl. ex P. Laws. & C. Laws.) in mixed-conifer forests of the Sierra Nevada to estimate stem radial growth under current stand structure. We ranked correlations of basal area increment of the last 10 years (BAI10) separately across 20 competition indices (CIs). The best-ranked CIs were used to test the relative influence of competition, tree size, and site variables on BAI10 with linear mixed models. While crown overlap was a common variable in CIs among both species, BAI10 of P. lambertiana was less impacted by intraspecific competition, and P. ponderosa appeared sensitive to all competing stems. The results suggest that local calibration of CIs with crown parameters may aid in interpreting Pinus species growth patterns and that the relative impact of competition on growth is species specific.

Résumé

Les processus de croissance des forêts sont déterminés par la productivité de la station et les caractéristiques fonctionnelles des espèces tout en étant ultimement limités par la demande cumulative de ressources, ce qui entraîne une dynamique de concurrence entre les communautés forestières qui se succèdent. Les efforts antérieurs visant à quantifier la concurrence ont utilisé des mesures de densité ou des indices d’abondance locale des arbres pour modéliser la production et planifier les inventaires de reboisement. Ces méthodes se sont étendues aux applications en dendroclimatologie et en restauration qui supposent généralement une réaction concurrentielle similaire entre les espèces de différents types fonctionnels. Nous avons évalué les indices de concurrence de deux espèces d’intérêt, Pinus lambertiana (Douglas) et Pinus ponderosa (Douglas ex. P. Lawson et C. Lawson), dans des forêts mixtes de conifères de la Sierra Nevada pour estimer la croissance radiale des arbres avec la structure actuelle des peuplements. Nous avons ordonné les corrélations de l’accroissement en surface terrière des 10 dernières années (AST10) séparément pour 20 indices de concurrence (IC). Les IC les mieux classés ont été utilisés pour tester l'influence relative de la concurrence, de la taille des arbres et des variables de la station sur AST10 à l’aide de modèles mixtes linéaires. Même si le chevauchement des cimes était une variable commune aux IC des deux espèces, AST10 de P. lambertiana était moins influencé par la concurrence intraspécifique et P. ponderosa semblait sensible à tous les arbres concurrents. Les résultats indiquent que l'étalonnage local des IC avec des paramètres de la cime peut aider à interpréter les patrons de croissance des espèces du genre Pinus, et que l'impact relatif de la concurrence sur la croissance est propre à chaque espèce. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Aaltonen V.T. 1926. On the space arrangement of trees and root competition. J. For. 26: 627–644.
Alemdag, I.S. 1978. Evaluation of some competition indices for the prediction of diameter increment in planted white spruce. Forest Management Institute, Ottawa, Ont. Information Rep. FMR-X-108.
Assmann, E. 1970. The principles of forest yield study. 1st ed. Pergamon Press Ltd., Oxford, 506 pp.
Bartoń, K. 2020. MuMIn: Multi-model inference. R package version 1.43.17. Available from https://CRAN.R-project.org/package=MuMIn.
Battles J.J., Robards T., Das A., Waring K., Gilless J.K., Biging G., and Schurr F. 2008. Climate change impacts on forest growth and tree mortality: a data-driven modeling study in the mixed-conifer forest of the Sierra Nevada. Clim. Change, 87(S1): S193–S213.
Bella I.E. 1971. A new competition model for individual trees. For. Sci. 17: 364–372.
Biging G.S. and Dobbertin M. 1992. A comparison of distance-dependent competition measures for height and basal growth of individual conifer trees. For. Sci. 42: 695–720.
Biging G.S. and Dobbertin M. 1995. Evaluation of competition indices in individual tree growth models. For. Sci. 38: 360–377.
Boeck A., Dieler J., Biber P., Pretzsch H., and Ankerst D.P. 2014. Predicting tree mortality for European beech in southern Germany using spatially explicit competition indices. For. Sci. 60(4): 613–622.
Brand D.G. 1986. A competition index for predicting the vigour of planted Douglas-fir in southwestern British Columbia. Can. J. For. Res. 16(1): 23–29.
Breheny, P., and Burchett, W. 2020. Visreg: visualization of regression models. R package version 2.7.0. Available from http://pbreheny.github.io/visreg.
Burton P.J. 1993. Some Limitations inherent to static indices of plant competition. Can. J. For. Res. 23(10): 2141–2152.
Canham C.D., LePage P.T., and Coates K.D. 2004. A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can. J. For. Res. 34(4): 778–787.
Cassell B.A., Scheller R.M., Lucash M.S., Hurteau M.D., and Loudermilk E.L. 2019. Widespread severe wildfires under climate change lead to increased forest heterogeneity in dry mixed-conifer forests. Ecosphere, 10(11): e02934.
Cattaneo N., Bravo-Oviedo A., and Bravo F. 2018. Analysis of tree interactions in a mixed Mediterranean pine stand using competition indices. Eur. J. For. Res. 137 (1): 109–120.
Churchill D.J., Larson A.J., Dahlgreen M.C., Franklin J.F., Hessburg P.F., and Lutz J.A. 2013. Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring. For. Ecol. Manage. 291: 442–457.
Contreras M.A., Affleck D., and Chung W. 2011. Evaluating tree competition indices as predictors of basal area increment in western Montana forests. For. Ecol. Manage. 262: 1939–1949.
Corral-Rivas, J.J. 2006. Models of tree growth and spatial structure for multi-species, uneven-aged forests in Durango (Mexico). Ph.D. dissertation, Göttingen University, Cuvillier Verlag, Göttingen.
Daniels R.F. 1976. Simple competition indices and their correlation with annual loblolly pine tree growth. For. Sci. 22(4): 454–456.
Das A. 2012. The effect of size and competition on tree growth rate in old-growth coniferous forests. Can. J. For. Res. 42(11): 1983–1995.
Dickinson Y.L., Battaglia M.A., and Asherin L.A. 2019. Evaluation of the FVS-CR diameter growth model in structurally-heterogenous ponderosa pine (Pinus ponderosa Douglas ex C. Lawson) stands in the southern Rockies, and potential modifications. For. Ecol. Manage. 448: 1–10.
Ek, A.R., and Monserud, R.A. 1974. FOREST: A model for the growth and reproduction of forest stands. Department of Forestry – The University of Wisconsin, Madison. Res. Rep. R26535.
Ferrell, G.T. 1996. The influence of insect pests and pathogens on Sierra forests. In Sierra Nevada Ecosystem Project: Final report to Congress. Vol. II. The University of California – Cent. Wat. Wild. Res. Davis, Calif., pp. 1177–1192.
Ford K.R., Breckheimer I.K., Franklin J.F., Freund J.A., Kroiss S.J., Larson A.J., et al. 2017. Competition alters tree growth response to climate at individual and stand scales. Can. J. For. Res. 47(1): 53–62.
Fry D.L., Stephens S.L., Collins B.M., North M.P., Franco-Vizcaíno E., and Gill S.J. 2014. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests. PloS ONE, 9(2): e88985.
Füldner K. 1995. Zur Strukturbeschreibung in Mischbeständen. Forstarchiv, 66: 235–240.
Glover G.R. and Hool J.N. 1979. A basal area predictor of loblolly pine plantation mortality. For. Sci. 25(2): 275–282.
Gómez-Aparicio L., Garcia-Valdés R., Ruiz-Benito P., and Zavala M.A. 2011. Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: Implications for forest management under global change. Global Change Biol. 17(7): 2400–2414.
Hegyi, F. 1974. A simulation model for managing jackpine stands. In Proceedings of IUFRO meeting S4.01.04 on growth models for tree and stand simulation. Edited by J. Fries. Royal College of Forestry, Stockholm, Sweden, pp. 74–90.
Holmes R.L. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43: 69–78.
Johnson C., Chhin S., and Zhang J.W. 2017. Effects of climate on competitive dynamics in mixed conifer forests of the Sierra Nevada. For. Ecol. Manage. 394: 1–12.
Keyser, C.E. 2019. Inland California and Southern Cascades (CA) Variant overview – Forest Vegetation Simulator. USDA For. Serv. Int. Rep.
Kinloch, B.B., Jr., and Scheuner, W.H. 1990. Pinus lambertiana Dougl. In Silvics of North America, Volume 1. Conifers. Edited by R.M. Burns and B.H. Honkala. USDA agriculture handbook 654. pp. 370–380.
Krajicek J., Brinkman K., and Gingrich S. 1961. Crown competition-a measure of density. For. Sci. 7: 35–42.
Kuehne C., Weiskittel A.R., Fraver S., and Puettmann K.J. 2015. Effects of thinning-induced changes in structural heterogeneity on growth, ingrowth, and mortality in secondary coastal Douglas-fir forests. Can. J. For. Res. 45(11): 1448–1461.
Kuehne C., Weiskittel A.R., and Waskiewicz J. 2019. Comparing performance of contrasting distance-independent and distance-dependent competition metrics in predicting individual tree diameter increment and survival within structurally-heterogenous, mixed-species forests of the Northeastern United States. For. Ecol. Manage. 433: 205–216.
Long J.N. and Smith F.W. 1984. Relation between size and density in developing stands: A description and possible mechanism. For. Ecol. Manage. 7: 191–206.
Looney C.E., D’Amato A.W., Fraver S., Palik B.J., and Reinikainen M.R. 2016. Examining the influences of tree-to-tree competition and climate on size-growth relationships in hydric, multi-aged Fraxinus nigra stands. For. Ecol. Manage. 375: 238–248.
Looney C.E., D’Amato A.W., Palik B.J., Fraver S., and Kastendick D.N. 2018. Size-growth relationship, tree spatial patterns, and tree-tree competition influence tree growth and stand complexity in a 160-year red pine chronosequence. For. Ecol. Manage. 424: 85–94.
Lorimer C.G. 1983. Tests of age-independent competition indices for individual trees in natural hardwood stands. For. Ecol. Manage. 6: 343–360.
Lumley, T. 2020. Leaps: regression subset selection, including exhaustive search. R package version 3.1.0. Available from https://CRAN.R-project.org/package=leaps.
Ma Q., Su Y., Tao S., and Guo Q. 2018. Quantifying individual tree growth and competition using bi-temporal airborne laser scanning data: a case study in the Sierra Nevada Mountains, California. Int. J. Digit. Earth, 11(5): 485–503.
National Climate Data Center. 2016. National oceanic and atmospheric administration [online]. Available from http://www.ncdc.noaa.gov/climate-information [accessed on 22 Nov 2016].
Noone, C.S., and Bell, J.F. 1980. An evaluation of eight inter tree competition indices. Forest Research Laboratory - Oregon State University, Corvallis. Res. Bull. 66.
Oliver, W.W. 1996. Silvics of sugar pine: clues to distribution and management. In Proceedings of a Symposium presented by the California Sugar Pine Management Committee: Sugar Pine: Status, Values, and Roles in Ecosystems. Edited by B. Kinloch, Jr., M. Marosy, and M.E. Huddleson. University of California – Div. Ag. Nat. Res. Davis, California. Publication 3362. pp. 28–33.
Oliver, W.W., and Ryker, R.A. 1990. Pinus ponderosa Dougl. Ex Laws. In Silvics of North America. Vol. 1. Conifers. Edited by R.M. Burns and B.H. Honkala. USDA Agriculture Handbook 654. pp. 413–424.
Pastorella F. and Paletto A. 2013. Stand structure indices as tools to support forest management: an application to Trentino forests (Italy). J. For. Sci. 59(4): 159–168.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Development Team, 2017. nlme: linear and nonlinear mixed effects models. R Package version 3.1.
Premer M.I., Chhin S., and Zhang J.W. 2017. Alternative approaches to mixed conifer forest restoration: partitioning the competitive neighborhood. New For. 48(2): 1–16.
R Core Team. 2018. R: A language and environment for statistical computing [online]. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org/.
Reineke L.H. 1933. Perfecting a stand-density index for even aged forests. J. Agric. Res. 46: 627–638.
Rouvinen S. and Kuuluvainen T. 1997. Structure and asymmetry of tree crowns in relation to local competition in a natural mature Scot pine forest. Can. J. For. Res. 27(6): 890–902.
Shinozaki K., Yoda K., Hozumi K., and Kira T. 1964. A quantitative analysis of plant-form- the pipe model theory. I. Basic analyses. Jpn. J. Ecol. 14(3): 97–104.
Slack A.W., Kane J.M., Knapp E.E., and Sherriff R.L. 2017. Contrasting impacts of climate and competition on large sugar pine growth and defense in a fire-excluded forest of the Central Sierra Nevada. Forests, 8(7): 244.
Smith, S.H. 1977. The evaluation of competitive stress index as a measure of stand density for young growth Douglas-fir. M.Sc. thesis, School of Forestry, Oregon State University, Corvallis, Ore., 188 pp.
Stadt K.J., Huston C., Coates K.D., Feng Z., Dale M.R.T., and Lieffers V.J. 2007. Evaluation of competition and light estimation indices for predicting diameter growth in mature boreal mixed forests. Ann. For. Sci. 64: 477–490.
Stage A.R. 1976. An expression for the slope, aspect, and habitat type on tree growth. For. Sci. 22: 457–460.
Stephens S.L. 1998. Evaluation of the effects of silvicultural and fuels treatments on potential fire behavior in Sierra Nevada mixed-conifer forests. For. Ecol. Manage. 105: 21–35.
Von Gadow K. 1993. Zur Bestandesbeschreibung in der Forsteinrichtung. Forst und Holz. 48: 601––606.
Waring K.M. and O’Hara K.L. 2009. Stand development and tree growth response to sugar pine mortality in Sierran mixed-conifer forests. Northwest Sci. 83(2): 89–100.
Waring R.H., Schroeder P.E., and Oren R. 1982. Application of the pipe model theory to predict canopy leaf area. Can. J. For. Res. 12(3): 556–560.
Watkinson A.R., Lonsdale W.M., and Firbank L.G. 1983. A neighborhood approach to self-thinning. Oecologia, 61: 381–384.
Wykoff, W.R., Crookston, N.L., and Stage, A.R. 1982. User’s guide to the stand prognosis model. USDA For. Serv. Gen-Rep INT-133. General Technical Report INT-133. USDA Forest Service.
Yamaguchi D.K. 1991. A simple method for cross-dating increment cores from living trees. Can. J. For. Res. 21(3): 414–416.
Young D.N., Stevens J.T., Earles J.M., Moore J., Ellis A., Jirka A.L., and Latimer A.M. 2017. Long term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 20: 78–86.
Zenner E.K. and Hibbs D.E. 2000. A new method for modeling the heterogeneity of forest structure. For. Ecol. Manage. 129: 75–87.
Zhang J.W., Ritchie M.W., Maguire D.A., and Oliver W.W. 2013. Thinning ponderosa pine (Pinus ponderosa) stands reduces mortality while maintaining stand productivity. Can. J. For. Res. 43(4): 311–320.
Zhang J.W., Finley K., Nels J., and Ritchie M.W. 2019. Lowering stand density enhances climate resiliency of ponderosa pine forests to disturbances and climate change. For. Sci. 65(4): 496–507.

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 51Number 4April 2021
Pages: 524 - 532

History

Received: 5 May 2020
Accepted: 7 September 2020
Published online: 9 September 2020

Permissions

Request permissions for this article.

Key Words

  1. tree competition
  2. silviculture
  3. stand dynamics
  4. Sierra Nevada
  5. mixed conifer

Mots-clés

  1. concurrence entre les arbres
  2. sylviculture
  3. dynamique des peuplements
  4. Sierra Nevada
  5. forêts mixtes de conifères

Authors

Affiliations

Michael I. Premer mipremer@mtu.edu
Michigan Technological University, College of Forest Resources and Environmental Science, 1400 Townsend Drive, Houghton, MI 49930, USA.
Sophan Chhin
West Virginia University, Davis College of Agriculture, Natural Resources, and Design, Division of Forestry and Natural Resources, 1145 Evansdale Drive, Morgantown, WV 26506, USA.
Jianwei Zhang
USDA Forest Service, Pacific Southwest Research Station, 3644 Avtech Parkway, Redding, CA 96002, USA.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Developing nonlinear additive tree crown width models based on decomposed competition index and tree variables
2. Estimation of individual stem volume and diameter from segmented UAV laser scanning datasets in Pinus taeda L. plantations

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media