Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.

Long-term effects of prescribed burning, tree retention, and browsing on deciduous tree recruitment in European boreal forests

Publication: Canadian Journal of Forest Research
5 November 2020


Silvicultural practices, effective fire suppression, and increased browser densities have profoundly altered structural diversity in boreal forests. Prescribed burning and retention forestry may counteract losses in structural diversity in managed forests by maintaining a higher deciduous admixture. We constructed an experiment on 18 sites with three types of timber harvesting (uncut, cut with retention, and clearcut) and burned half of these sites. Subsequently, we established a herbivore treatment with three compartments (unfenced, fenced excluding moose (Alces alces (Linnaeus, 1758)), and fenced excluding moose and hares (Lepus spp.)). In these compartments, we planted rowan (Sorbus aucuparia L.), European aspen (Populus tremula L.), and silver birch (Betula pendula Roth) seedlings and monitored these for 17 years. Birch and rowan mortality were lower on cut and burned sites, with retention further enhancing birch survival on these sites. Retention without burning did not lower seedling mortality of any tree species. While browsing resulted in greater mortality on cut sites, burning appeared to greatly reduce browsing on birch and rowan. On mature uncut sites, seedlings of all tree species exhibited high mortality. Our findings show that deciduous tree recruitment can be improved through prescribed burning, particularly for birch and rowan, and that browsing impacts on deciduous trees depend on forest age.


Les pratiques sylvicoles, la suppression efficace des feux et l’augmentation de la densité des brouteurs ont profondément altéré la diversité structurelle dans les forêts boréales. Le brûlage dirigé et la coupe à rétention variable peuvent compenser les pertes de diversité structurelle dans les forêts aménagées en maintenant un mélange plus élevé d’espèces feuillues. Dans 18 stations, nous avons mis sur pied une expérience comportant trois types de récolte (aucune coupe, coupe avec rétention d’arbres et coupe rase) ainsi qu’un brûlage dirigé dans la moitié de ces stations. Par la suite, nous avons établi un traitement en ce qui a trait aux herbivores comprenant trois compartiments (pas d’exclos, exclos pour les élans (Alces alces (Linnaeus, 1758)) et exclos pour les élans et les lièvres (Lepus spp.)). Dans ces compartiments, nous avons planté des semis de sorbier des oiseleurs (Sorbus aucuparia L.), de tremble d’Europe (Populus tremula L.) et de bouleau verruqueux (Betula pendula Roth), et nous avons effectué un suivi pendant 17 ans. La mortalité du bouleau et du sorbier était plus faible dans les stations coupées et brûlées, et la coupe avec rétention a davantage augmenté la survie du bouleau dans ces stations. La coupe avec rétention sans brûlage dirigé n’a pas réduit la mortalité chez aucune des espèces d’arbres. Alors que le broutement a entraîné plus de mortalité dans les stations coupées, le brûlage dirigé a semblé réduire grandement le broutement du bouleau et du sorbier. Dans les stations matures non coupées, les semis de toutes les espèces d’arbres ont connu une forte mortalité. Nos résultats montrent que le recrutement d’essences feuillues peut être amélioré par le brûlage dirigé, surtout dans le cas du bouleau et du sorbier, et que les impacts du broutement sur les feuillus dépendent de l’âge de la forêt. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.


Ahti T., Hämet-Ahti L., and Jalas J. 1968. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 5(3): 169–211.
Angelstam P., Pedersen S., Manton M., Garrido P., Naumov V., and Elbakidze M. 2017. Green infrastructure maintenance is more than land cover: Large herbivores limit recruitment of key-stone tree species in Sweden. Landsc. Urban Plann. 167: 368–377.
Attiwill P.M. 1994. The disturbance of forest ecosystems: the ecological basis for conservative management. For. Ecol. Manage. 63(2): 247–300.
Bailey J.K. and Whitham T.G. 2002. Interactions among fire, aspen, and elk affect insect diversity: reversal of a community response. Ecology, 83(6): 1701–1712.
Bergqvist G., Bergström R., and Wallgren M. 2014. Recent browsing damage by moose on Scots pine, birch and aspen in young commercial forests — effects of forage availability, moose population density and site productivity. Silva Fenn. 48(1): 1077.
Bernes C., Macura B., Jonsson B.G., Junninen K., Müller J., Sandström J., et al. 2018. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates. A systematic review. Environ. Evidence, 7(1): 13.
Certini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia, 143(1): 1–10.
Čugunovs M., Tuittila E.-S., Mehtätalo L., Pekkola L., Sara-Aho I., and Kouki J. 2017. Variability and patterns in forest soil and vegetation characteristics after prescribed burning in clear-cuts and restoration burnings. Silva Fenn. 51(1): 1718.
de Chantal M. and Granström A. 2007. Aggregations of dead wood after wildfire act as browsing refugia for seedlings of Populus tremula and Salix caprea. For. Ecol. Manage. 250(1–2): 3–8.
de Chantal M., Lilja-Rothsten S., Peterson C., Kuuluvainen T., Vanha-Majamaa I., and Puttonen P. 2009. Tree regeneration before and after restoration treatments in managed boreal Picea abies stands. Appl. Veg. Sci. 12(2): 131–143.
den Herder M., Kouki J., and Ruusila V. 2009. The effects of timber harvest, forest fire, and herbivores on regeneration of deciduous trees in boreal pine-dominated forests. Can. J. For. Res. 39(4): 712–722.
Edenius L. and Ericsson G. 2015. Effects of ungulate browsing on recruitment of aspen and rowan: a demographic approach. Scand. J. For. Res. 30(4): 283–288.
Edenius L., Ericsson G., Kempe G., Bergström R., and Danell K. 2011. The effects of changing land use and browsing on aspen abundance and regeneration: a 50-year perspective from Sweden. J. Appl. Ecol. 48(2): 301–309.
Esseen P.-A., Ehnström B., Ericson L., and Sjöberg K. 1997. Boreal forests. Ecol. Bull. 46: 16–47.
Franklin C.M.A., Nielsen S.E., and Macdonald S.E. 2019. Understory vascular plant responses to retention harvesting with and without prescribed fire. Can. J. For. Res. 49(9): 1087–1100.
Franklin J.F., Lindenmayer D., MacMahon J.A., McKee A., Magnuson J., Perry D.A., et al. 2000. Threads of continuity. Conserv. Pract. 1(1): 8–17.
Gustafsson L., Kouki J., and Sverdrup-Thygeson A. 2010. Tree retention as a conservation measure in clear-cut forests of northern Europe: a review of ecological consequences. Scand. J. For. Res. 25(4): 295–308.
Hagge J., Müller J., Bässler C., Biebl S.S., Brandl R., Drexler M., et al. 2019. Deadwood retention in forests lowers short-term browsing pressure on silver fir saplings by overabundant deer. For. Ecol. Manage. 451: 117531.
Hallinger M., Johansson V., Schmalholz M., Sjöberg S., and Ranius T. 2016. Factors driving tree mortality in retained forest fragments. For. Ecol. Manage. 368: 163–172.
Halme P., Allen K.A., Auniņš A., Bradshaw R.H.W., Brūmelis G., Čada V., et al. 2013. Challenges of ecological restoration: Lessons from forests in northern Europe. Biol. Conserv. 167: 248–256.
Hardenbol A.A., Junninen K., and Kouki J. 2020. A key tree species for forest biodiversity, European aspen (Populus tremula), is rapidly declining in boreal old-growth forest reserves. For. Ecol. Manage. 462: 118009.
Hedenås H. and Hedström P. 2007. Conservation of epiphytic lichens: Significance of remnant aspen (Populus tremula) trees in clear-cuts. Biol. Conserv. 135(3): 388–395.
Heikkala O., Suominen M., Junninen K., Hämäläinen A., and Kouki J. 2014. Effects of retention level and fire on retention tree dynamics in boreal forests. For. Ecol. Manage. 328: 193–201.
Heikkilä R. 1991. Moose browsing in a Scots pine plantation mixed with deciduous tree species. Acta For. Fenn. 224: 7670.
Hiltunen M. and Kauhala K. 2006. Selection of sapling stand habitats by the mountain hare (Lepus timidus) during winter. Mamm. Biol. 71(3): 183–189.
Hjältén J., Danell K., and Ericson L. 2004. Hare and vole browsing preferences during winter. Acta Theriol. 49(1): 53–62.
Hjältén J., Gibb H., and Ball J.P. 2010. How will low-intensity burning after clear-felling affect mid-boreal insect assemblages? Basic Appl. Ecol. 11(4): 363–372.
Hynynen J., Niemistö P., Viherä-Aarnio A., Brunner A., Hein S., and Velling P. 2010. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry, 83(1): 103–119.
Hyvärinen E., Kouki J., Martikainen P., and Lappalainen H. 2005. Short-term effects of controlled burning and green-tree retention on beetle (Coleoptera) assemblages in managed boreal forests. For. Ecol. Manage. 212(1): 315–332.
Hämäläinen A., Hujo M., Heikkala O., Junninen K., and Kouki J. 2016. Retention tree characteristics have major influence on the post-harvest tree mortality and availability of coarse woody debris in clear-cut areas. For. Ecol. Manage. 369: 66–73.
Ilmatieteenlaitos. 2019. Terminen kasvukausi. [Thermal growing season.] Available from [accessed 22 May 2020].
Junninen K., Penttilä R., and Martikainen P. 2007. Fallen retention aspen trees on clear-cuts can be important habitats for red-listed polypores: a case study in Finland. Biodivers. Conserv. 16(2): 475–490.
Komonen A., Tuominen L., Purhonen J., and Halme P. 2020. Landscape structure influences browsing on a keystone tree species in conservation areas. For. Ecol. Manage. 457: 117724.
Kouki J. and Salo K. 2020. Forest disturbances affect functional groups of macrofungi in young successional forests — harvests and fire lead to different fungal assemblages. For. Ecol. Manage. 463: 118039.
Kouki J., Löfman S., Martikainen P., Rouvinen S., and Uotila A. 2001. Forest fragmentation in Fennoscandia: Linking habitat requirements of wood-associated threatened species to landscape and habitat changes. Scand. J. For. Res. 16: 27–37.
Kouki J., Arnold K., and Martikainen P. 2004. Long-term persistence of aspen — a key host for many threatened species — is endangered in old-growth conservation areas in Finland. J. Nat. Conserv. 12(1): 41–52.
Kuuluvainen T. and Grenfell R. 2012. Natural disturbance emulation in boreal forest ecosystem management — theories, strategies, and a comparison with conventional even-aged management. Can. J. For. Res. 42(7): 1185–1203.
Landhäusser S.M., Pinno B.D., and Mock K.E. 2019. Tamm Review: Seedling-based ecology, management, and restoration in aspen (Populus tremuloides). For. Ecol. Manage. 432: 231–245.
Lankia H., Wallenius T., Várkonyi G., Kouki J., and Snäll T. 2012. Forest fire history, aspen and goat willow in a Fennoscandian old-growth landscape: are current population structures a legacy of historical fires? J. Veg. Sci. 23(6): 1159–1169.
Latva-Karjanmaa T., Penttilä R., and Siitonen J. 2007. The demographic structure of European aspen (Populus tremula) populations in managed and old-growth boreal forests in eastern Finland. Can. J. For. Res. 37(6): 1070–1081.
Linder P., Elfving B., and Zackrisson O. 1997. Stand structure and successional trends in virgin boreal forest reserves in Sweden. For. Ecol. Manage. 98(1): 17–33.
Månsson J., Kalén C., Kjellander P., Andrén H., and Smith H. 2007. Quantitative estimates of tree species selectivity by moose (Alces alces) in a forest landscape. Scand. J. For. Res. 22(5): 407–414.
Nilsson M.-C. and Wardle D.A. 2005. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 3(8): 421–428.
Nuopponen M., Vuorinen T., Jämsä S., and Viitaniemi P. 2005. Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J. Wood Chem. Technol. 24(1): 13–26.
Olsson J. and Jonsson B.G. 2010. Restoration fire and wood-inhabiting fungi in a Swedish Pinus sylvestris forest. For. Ecol. Manage. 259(10): 1971–1980.
Pasanen H., Rehu V., Junninen K., and Kouki J. 2015. Prescribed burning of canopy gaps facilitates tree seedling establishment in restoration of pine-dominated boreal forests. Can. J. For. Res. 45(9): 1225–1231.
Pasanen H., Rouvinen S., and Kouki J. 2016. Artificial canopy gaps in the restoration of boreal conservation areas: long-term effects on tree seedling establishment in pine-dominated forests. Eur. J. For. Res. 135(4): 697–706.
Pinzon J., Spence J.R., and Langor D.W. 2013. Effects of prescribed burning and harvesting on ground-dwelling spiders in the Canadian boreal mixedwood forest. Biodivers. Conserv. 22(6): 1513–1536.
R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from
Rosenvald R., Lõhmus P., Rannap R., Remm L., Rosenvald K., Runnel K., and Lõhmus A. 2019. Assessing long-term effectiveness of green-tree retention. For. Ecol. Manage. 448: 543–548.
Runnel K., Rosenvald R., and Lõhmus A. 2013. The dying legacy of green-tree retention: Different habitat values for polypores and wood-inhabiting lichens. Biol. Conserv. 159: 187–196.
Ryan K.C. 2002. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fenn. 36(1): 13–39.
Salo K., Domisch T., and Kouki J. 2019. Forest wildfire and 12 years of post-disturbance succession of saprotrophic macrofungi (Basidiomycota, Ascomycota). For. Ecol. Manage. 451: 117454.
Sterkenburg E., Clemmensen K.E., Lindahl B.D., and Dahlberg A. 2019. The significance of retention trees for survival of ectomycorrhizal fungi in clear-cut Scots pine forests. J. Appl. Ecol. 56(6): 1367–1378.
Suominen M., Junninen K., Heikkala O., and Kouki J. 2015. Combined effects of retention forestry and prescribed burning on polypore fungi. J. Appl. Ecol. 52(4): 1001–1008.
Suominen M., Junninen K., Heikkala O., and Kouki J. 2018. Burning harvested sites enhances polypore diversity on stumps and slash. For. Ecol. Manage. 414: 47–53.
Tikkanen O.-P., Martikainen P., Hyvärinen E., Junninen K., and Kouki J. 2006. Red-listed boreal forest species of Finland: associations with forest structure, tree species, and decaying wood. Ann. Zool. Fenn. 43: 373–383.
Wallenius T. 2011. Major decline in fires in coniferous forests — reconstructing the phenomenon and seeking for the cause. Silva Fenn. 45(1): 36.
Wan H.Y., Olson A.C., Muncey K.D., and St. Clair S.B. 2014a. Legacy effects of fire size and severity on forest regeneration, recruitment, and wildlife activity in aspen forests. For. Ecol. Manage. 329: 59–68.
Wan H.Y., Rhodes A.C., and St. Clair S.B. 2014b. Fire severity alters plant regeneration patterns and defense against herbivores in mixed aspen forests. Oikos, 123(12): 1479–1488.
West, P.W. 2015. Tree and forest measurement. 3rd ed. Springer, Berlin, Germany.
Wikars L.-O. 2002. Dependence on fire in wood-living insects: an experiment with burned and unburned spruce and birch logs. J. Insect Conserv. 6(1): 1–12.
Zackrisson O. 1977. Influence of forest fires on the North Swedish boreal forest. Oikos, 29(1): 22–32.
Zakrisson C., Ericsson G., and Edenius L. 2007. Effects of browsing on recruitment and mortality of European aspen (Populus tremula L.). Scand. J. For. Res. 22(4): 324–332.

Information & Authors


Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 51Number 5May 2021
Pages: 660 - 667


Received: 23 May 2020
Accepted: 3 November 2020
Accepted manuscript online: 5 November 2020
Version of record online: 5 November 2020


Request permissions for this article.

Key Words

  1. forest management
  2. moose
  3. natural disturbances
  4. shade-intolerant species
  5. tree recruitment


  1. aménagement forestier
  2. élan
  3. perturbations naturelles
  4. espèce intolérante à l’ombre
  5. recrutement d’arbres



Alwin A. Hardenbol [email protected]
University of Eastern Finland, School of Forest Sciences, P.O. Box 111, 80101 Joensuu, Finland.
Michael den Herder
European Forest Institute, Yliopistokatu 6 B, 80100 Joensuu, Finland.
Jari Kouki
University of Eastern Finland, School of Forest Sciences, P.O. Box 111, 80101 Joensuu, Finland.


Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Long-term effects of herbivory on tree growth are not consistent with browsing preferences

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.


Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF

Full Text

View Full Text





Share Options


Share the article link

Share on social media