Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Effects of timber harvest on epigeous fungal fruiting patterns and community structure in a northern hardwood ecosystem

Publication: Canadian Journal of Forest Research
31 May 2021

Abstract

Epigeous fungal fruiting has important impacts on fungal reproduction and ecosystem function. Forest disturbances, such as timber harvest, impact moisture, host availability, and substrate availability, which in turn may drive changes in fungal fruiting patterns and community structure. We surveyed mushrooms in 0.4 ha patch cuts (18 months post-harvest) and adjacent intact hardwood forest in northern New Hampshire, USA, to document the effects of timber harvest on summer fruiting richness, biomass, diversity, and community structure of ectomycorrhizal, parasitic, and saprobic mushroom taxa. Fungal fruiting richness, diversity, and community heterogeneity were greater in intact forests than patch cuts. Among functional groups, ectomycorrhizal fruiting richness, diversity, and biomass were greater in unharvested areas than in the patch cuts, but parasitic and saprobic fruiting did not differ statistically between the two forest conditions. Our findings suggest that timber harvest simplifies fungal fruiting communities shortly after harvest, in particular triggering declines in ectomycorrhizal taxa which are important symbionts facilitating tree establishment and regeneration. Multi-aged silvicultural practices that maintain mature forest conditions adjacent to and throughout harvested areas through deliberate retention of overstory trees and downed woody material may promote fungal fruiting diversity in regenerating stands.

Résumé

La fructification des champignons épigés a des répercussions importantes sur la reproduction des champignons et la fonction de l’écosystème. Les perturbations de la forêt, telles que la récolte de bois, ont un impact sur l’humidité ainsi que la disponibilité des hôtes et du substrat, ce qui en retour peut amener des changements dans les patrons de fructification des champignons et la structure de la communauté. Nous avons inventorié les champignons dans des coupes par trouées de 0,4 ha (18 mois après la récolte) et dans des forêts feuillues adjacentes intactes dans le nord du New Hampshire, aux États-Unis, pour documenter les effets de la récolte de bois sur la diversité, la biomasse et la richesse des fructifications durant l’été ainsi que sur la structure de la communauté des taxons de champignons ectomycorhiziens, parasites et saprobies. La richesse et la diversité des fructifications fongiques ainsi que l’hétérogénéité des communautés étaient plus élevées dans les forêts intactes que dans les coupes par trouées. Parmi les groupes fonctionnels, la richesse, la diversité et la biomasse des fructifications des champignons ectomycorhiziens étaient plus élevées dans les zones non récoltées que dans les coupes par trouées. Par contre, dans les deux situations la fructification des champignons parasites ou saprobies n’était pas significativement différente. Nos résultats indiquent que la récolte de bois simplifie les fructifications des communautés fongiques peu de temps après la récolte, surtout en provoquant le déclin des taxons ectomycorhiziens, lesquels sont des symbiotes importants qui facilitent la régénération et l’établissement des arbres. Les pratiques sylvicoles inéquiennes qui maintiennent les conditions de la forêt mature adjacente aux zones récoltées et parmi ces zones par la rétention délibérée d’arbres dominants et de matériel ligneux au sol, peuvent promouvoir la diversité des fructifications fongiques dans les peuplements en régénération. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Ballard T.M. 2000. Impacts of forest management on northern forest soils. For. Ecol. Manage. 133(1-2): 37–42.
Baroni, T.J. 2017. Mushrooms of the northeastern United States and eastern Canada. Timber Press, Inc., Portland, Ore.
Barron, G. 1999. Mushrooms of northeast North America: Midwest to New England. Lone Pine Publishing, Edmonton, Alta.
Beug, M.W., Bessette, A.E., and Bessette, A.R. 2014. Ascomycete fungi of North America. University of Texas Press, Austin, Texas.
Birkebak J.M., Mayor J.R., Ryberg K.M., and Matheny P.B. 2013. A systematic, morphological and ecological overview of the Clavariaceae (Agaricales). Mycologia, 105(4): 896–911.
Bonet J.A., de-Miguel S., Martínez de Aragón J., Pukkala T., and Palahí M. 2012. Immediate effect of thinning on the yield of Lactarius group deliciosus in Pinus pinaster forests in Northeastern Spain. For. Ecol. Manage. 265: 211–217.
Brazee N.J., Lindner D.L., D’Amato A.W., Fraver S., Forrester J.A., and Mladenoff D.J. 2014. Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris. Biodivers. Conserv. 23(9): 2155–2172.
Brown A.J. and Casselton L.A. 2001. Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet. 17(7): 393–400.
Brundrett M.C. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil, 320(1): 37–77.
Byrd K.B., Parker V.T., Vogler D.R., and Cullings K.W. 2000. The influence of clear-cutting on ectomycorrhizal fungus diversity in a lodgepole pine (Pinus contorta) stand, Yellowstone National Park, Wyoming, and Gallatin National Forest, Montana. Can. J. Bot. 78(2): 149–156.
Clemmensen K.E., Finlay R.D., Dahlberg A., Stenlid J., Wardle D.A., and Lindahl B.D. 2015. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 205(4): 1525–1536.
Daigle J.J., Utley L., Chase L.C., Kuentzel W.F., and Brown T.L. 2012. Does new large private landownership and their management priorities influence public access in the northern forest? J. For. 110(2): 89–96.
Dale V.H., Joyce L.A., McNulty S., Neilson R.P., Ayres M.P., Flannigan M.D., et al. 2001. Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience, 51(9): 723–734.
Dickie I.A. and Reich P.B. 2005. Ectomycorrhizal fungal communities at forest edges. J. Ecol. 93(2): 244–255.
Durall D.M., Jones M.D., Wright E.F., Kroeger P., and Coates K.D. 1999. Species richness of ectomycorrhizal fungi in cutblocks of different sizes in the Interior Cedar-Hemlock forests of northwestern British Columbia: sporocarps and ectomycorrhizae. Can. J. For. Res. 29(9): 1322–1332.
Durall D.M., Gamiet S., Simard S.W., Kudrna L., and Sakakibara S.M. 2006. Effects of clearcut logging and tree species composition on the diversity and community composition of epigeous fruit bodies formed by ectomycorrhizal fungi. Can. J. Bot. 84(6): 966–980.
Fernández-Toirán L.M., Ágreda T., and Olano J.M. 2006. Stand age and sampling year effect on the fungal fruit body community in Pinus pinaster forests in central Spain. Can. J. Bot. 84(8): 1249–1258.
Gardes M. and Bruns T.D. 1996. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can. J. Bot. 74(10): 1572–1583.
Hagerman S.M., Jones M.D., Bradfield G.E., Gillespie M., and Durall D.M. 1999. Effects of clear-cut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Can. J. For. Res. 29(1): 124–134.
Halbwachs H. and Bässler C. 2015. Gone with the wind — a review on basidiospores of lamellate agarics. Mycosphere, 6(1): 78–112.
Heilmann-Clausen J. and Christensen M. 2004. Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For. Ecol. Manage. 201(1): 105–117.
Hothorn, T., and Hornik, K., 2019. exactRankTests: exact distributions for rank and permutation tests. R package version 0.8-31. Available from https://CRAN.Rproject.org/package=exactRankTests.
Jevon F.V., D’Amato A.W., Woodall C.W., Evans K., Ayres M.P., and Matthes J.H. 2019. Tree basal area and conifer abundance predict soil carbon stocks and concentrations in an actively managed forest of northern New Hampshire, USA. For. Ecol. Manage. 451: 117534.
Jones M.D., Durall D.M., and Cairney J.W.G. 2003. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 157(3): 399–422.
Junninen K., Similä M., Kouki J., and Kotiranta H. 2006. Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia. Ecography, 29(1): 75–83.
Kauserud H., Stige L.C., Vik J.O., Økland R.H., Høiland K., and Stenseth N.C. 2008. Mushroom fruiting and climate change. Proc. Natl. Acad. Sci. USA. 105(10): 3811–3814.
Kittredge D.B., Finley A.O., and Foster D.R. 2003. Timber harvesting as ongoing disturbance in a landscape of diverse ownership. For. Ecol. Manage. 180(1): 425–442.
Krah F.-S., Seibold S., Brandl R., Baldrian P., Müller J., and Bässler C. 2018. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol. 106(4): 1428–1442.
Kuo, M. 2021. Mushroomexpert.com. Retrieved April 16, 2021 from the Mushroomexpert.com [website: www.mushroomexpert.com/index.htm].
Leski T., Rudawska M., Kujawska M., Stasińska M., Janowski D., Karliński L., and Wilgan R. 2019. Both forest reserves and managed forests help maintain ectomycorrhizal fungal diversity. Biol. Conserv. 238: 108206.
Lincoff, G.H. 1981. Field guide to mushrooms. Chanticleer Press, Inc., New York.
Lodge D.J., Padamsee M., Matheny P.B., Aime M.C., Cantrell S.A., Boertmann D., et al. 2014. Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). Fungal Divers. 64(1): 1–99.
Luoma D.L., Eberhart J.L., Molina R., and Amaranthus M.P. 2004. Response of ectomycorrhizal fungus sporocarp production to varying levels and patterns of green-tree retention. For. Ecol. Manage. 202(1): 337–354.
Nagel L.M., Palik B.J., Battaglia M.A., D’Amato A.W., Guldin J.M., Swanston C.W., et al. 2017. Adaptive silviculture for climate change: a national experiment in manager–scientist partnerships to apply an adaptation framework. J. For. 115(3): 167–178.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. 2019. vegan: Community Ecology Package. R package version 2.5-6. Available from https://CRAN.R-project.org/package=vegan.
Orledge G.M. and Reynolds S.E. 2005. Fungivore host-use groups from cluster analysis: patterns of utilisation of fungal fruiting bodies by ciid beetles. Ecol. Entomol. 30(6): 620–641.
Ostry M.E.O. and Laflamme G.L. 2008. Fungi and diseases — natural components of healthy forests. Botany, 87(1): 22–25.
Parladé J., Martínez-Peña F., and Pera J. 2017. Effects of forest management and climatic variables on the mycelium dynamics and sporocarp production of the ectomycorrhizal fungus Boletus edulis. For. Ecol. Manage. 390: 73–79.
Parladé J., Queralt M., Pera J., Bonet J.A., Castaño C., Martínez-Peña F., et al. 2019. Temporal dynamics of soil fungal communities after partial and total clear-cutting in a managed Pinus sylvestris stand. For. Ecol. Manage. 449: 117456.
Petrenko C.L. and Friedland A.J. 2015. Mineral soil carbon pool responses to forest clearing in Northeastern hardwood forests. GCB Bioenergy, 7(6): 1283–1293.
R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org.
Sato H., Morimoto S., and Hattori T. 2012. A thirty-year survey reveals that ecosystem function of fungi predicts phenology of mushroom fruiting. PloS ONE, 7(11): e49777.
Shrestha B., Tanaka E., Hyun M.W., Han J.-G., Kim C.S., Jo J.W., et al. 2016. Coleopteran and Lepidopteran hosts of the entomopathogenic genus Cordyceps sensu lato. J. Mycol. 2016: 7648219.
Siitonen P., Lehtinen A., and Siitonen M. 2005. Effects of forest edges on the distribution, abundance, and regional persistence of wood-rotting fungi. Conserv. Biol. 19(1): 250–260.
Solgi A. and Najafi A. 2014. The impacts of ground-based logging equipment on forest soil. J. For. Sci. 60(No. 1): 28–34.
Stephens R.B. and Rowe R.J. 2020. The underappreciated role of rodent generalists in fungal spore dispersal networks. Ecology, 101(4): e02972.
Straatsma G. and Krisai-Greilhuber I. 2003. Assemblage structure, species richness, abundance, and distribution of fungal fruit bodies in a seven year plot-based survey near Vienna. Mycol. Res. 107(5): 632–640.
Straatsma G., Ayer F., and Egli S. 2001. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol. Res. 105(5): 515–523.
Summerville K.S. and Crist T.O. 2002. Effects of timber harvest on forest Lepidoptera: community, guild, and species responses. Ecol. Appl. 12(3): 820–835.
Toivanen T., Markkanen A., Kotiaho J.S., and Halme P. 2012. The effect of forest fuel harvesting on the fungal diversity of clear-cuts. Biomass Bioenergy, 39: 84–93.
Tomao A., Antonio Bonet J., Castaño C., and de-Miguel S. 2020. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manage. 457: 117678.
Ylisirniö A.-L., Penttilä R., Berglund H., Hallikainen V., Isaeva L., Kauhanen H., et al. 2012. Dead wood and polypore diversity in natural post-fire succession forests and managed stands — Lessons for biodiversity management in boreal forests. For. Ecol. Manage. 286: 16–27.

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 52Number 1January 2022
Pages: 51 - 58

History

Received: 23 January 2021
Accepted: 17 May 2021
Accepted manuscript online: 31 May 2021
Version of record online: 31 May 2021

Permissions

Request permissions for this article.

Key Words

  1. ectomycorrhizal fungi
  2. epigeous sporocarp
  3. fungal fruiting body
  4. forest disturbance
  5. fungal diversity

Mots-clés

  1. champignons ectomycorhiziens
  2. sporocarpe épigé
  3. fructification fongique
  4. perturbation de la forêt
  5. diversité fongique

Authors

Affiliations

Benjamin W. Borgmann-Winter [email protected]
Natural Resources and the Environment, University of New Hampshire, 114 James Hall, 56 College Road, Durham, NH 03824, USA.
Ryan B. Stephens
Natural Resources and the Environment, University of New Hampshire, 114 James Hall, 56 College Road, Durham, NH 03824, USA.
Anthony W. D’Amato
Rubenstein School of Environment and Natural Resources, University of Vermont, 204E Aiken Center, 81 Carrigan Drive, Burlington, VT 05405, USA.
Serita D. Frey
Natural Resources and the Environment, University of New Hampshire, 114 James Hall, 56 College Road, Durham, NH 03824, USA.
Rebecca J. Rowe
Natural Resources and the Environment, University of New Hampshire, 114 James Hall, 56 College Road, Durham, NH 03824, USA.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Wind and small mammals are complementary fungal dispersers

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media