Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Comparing long-term projected outcomes of adaptive silvicultural approaches aimed at climate change in red pine forests of northern Minnesota, USA

Publication: Canadian Journal of Forest Research
15 June 2021

Abstract

The Adaptive Silviculture for Climate Change (ASCC) project was developed to test ecosystem-specific adaptation approaches. The first ASCC trial was installed on the Cutfoot Experimental Forest (CEF) in northern Minnesota, USA, in 2014. Three adaptation treatments (resistance, resilience, and transition), along with a no action control, were tested and compared using Forest Vegetation Simulator to determine their relative success. We compared mean annual increment (MAI) and mortality and determined how well each treatment achieved its species composition and stand structure targets. MAI was highest in the no action (3.77 ± 0.43 m3·ha–1·year–1) and lowest in the transition (1.72 ± 0.16 m3·ha–1·year–1). However, MAI for the transition treatment continually increased over time, which extended culmination age. The no action control had the highest mortality with 38.76 (±1.32) trees·ha–1 per 10-year timestep, while the resistance and transition treatments had the lowest levels at 9.36 (±0.49) and 4.19 (±0.35) trees·ha–1, respectively. Our findings highlight the relative success of the transition, which had lower mortality, greater structural diversity, and a future-climate-adapted species composition. The results from this study provide important context for adaptive silviculture aimed at climate change and offers an example of potential outcomes of these forest adaptation options.

Résumé

Le projet de sylviculture adaptative face aux changements climatiques (SACC) a été entrepris pour tester des approches d’adaptation spécifiques aux écosystèmes. Le premier essai du projet SACC a été établi en 2014 dans la forêt expérimentale de Cutfoot (FEC) qui est située dans le nord du Minnesota, aux États-Unis. Trois traitements d’adaptation (résistance, résilience et transition) ainsi qu’un témoin non traité ont été testés et comparés à l’aide du simulateur de végétation forestière pour déterminer leur succès relatif. L’accroissement annuel moyen (AAM) et la mortalité ont été comparés entre les traitements et nous avons déterminé dans quelle mesure chaque traitement a atteint ses objectifs de composition en espèces et de structure de peuplement. L’AAM était le plus élevé dans le témoin (3,77 ± 0,43 m3·ha–1·an–1) et le plus faible dans le traitement de transition (1,72 ± 0,16 m3·ha–1·an–1). Cependant, l’AAM associé au traitement de transition a continuellement augmenté au fil du temps, ce qui a repoussé l’âge d’atteinte de l’AAM maximal. La mortalité la plus élevée a été observée dans le témoin avec 38,76 (±1,32) tiges·ha–1 par période de 10 ans, alors que les valeurs les plus basses ont été observées dans les traitements de résistance et de transition avec, respectivement, 9,36 (± 0,49) et 4,19 (±0,35) tiges·ha–1. Nos résultats mettent en évidence le succès relatif du traitement de transition qui était associée à une plus faible mortalité, une plus grande diversité structurelle et une composition en espèces adaptée au climat futur. Les résultats de cette étude fournissent un contexte important pour la sylviculture adaptative face aux changements climatiques et offrent un exemple de résultats potentiels des options d’adaptation forestière qui ont été testées. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Aaseng, N.E., Almendinger, J.C., Dana, R.P., Hanson, D.S., Lee, M.D., Rowe, E.R., et al. 2011. Minnesota’s native plant community classification: a statewide classification of terrestrial and wetland vegetation based on numerical analysis of plot data. Biological Report No. 108. Minnesota County Biological Survey, Ecological Land Classification Program, and Natural Heritage and Nongame Research Program. Minnesota Department of Natural Resources, St. Paul, Minn.
Adams, M.B., Loughry, L., and Plaugher, L. 2008. Experimental forests and ranges of the USDA Forest Service. Gen. Tech. Rep. NE-321 Revised. U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, Pa.
Aerts R. and Honnay O. 2011. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 11(1): 29.
Benzie, J.W. 1977. Manager’s handbook for red pine in the north-central states. General Technical Report NC-33. U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, Minn.
Bottero A., D’Amato A.W., Palik B.J., Bradford J.B., Fraver S., Battaglia M.A., and Asherin L.A. 2017. Density‐dependent vulnerability of forest ecosystems to drought. J. Appl. Ecol. 54: 1605–1614.
Crookston N.L. and Dixon G.E. 2005. The forest vegetation simulator: a review of its structure, content, and applications. Comput. Electron. Agric. 49(1): 60–80.
Crookston N.L., Rehfeldt G.E., Dixon G.E., and Weiskittel A.R. 2010. Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics. For. Ecol. Manage. 260(7): 1198–1211.
Dale V.H., Joyce L.A., McNulty S., Neilson R.P., Ayres M.P., Flannigan M.D., et al. 2001. Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience, 51(9): 723–734.
D’Amato A.W., Palik B.J., and Kern C.C. 2010. Growth, yield, and structure of extended rotation Pinus resinosa stands in Minnesota, USA. Can. J. For. Res. 40(5): 1000–1010.
DeClerck F.A., Barbour M.G., and Sawyer J.O. 2006. Species richness and stand stability in conifer forests of the Sierra Nevada. Ecology, 87(11): 2787–2799.
Dixon, G.E. 2002. Essential FVS: a user’s guide to the Forest Vegetation Simulator. Internal Report. U.S. Department of Agriculture, Forest Service, Forest Management Service Center, Fort Collins, Colo.
Dixon, G.E., and Keyser, C.E. 2008. Lake States (LS) variant overview: Forest Vegetation Simulator. Internal Report. U.S. Department of Agriculture, Forest Service, Forest Management Service Center, Fort Collins, Colo.
Drever C.R., Peterson G., Messier C., Bergeron Y., and Flannigan M. 2006. Can forest management based on natural disturbances maintain ecological resilience? Can. J. For. Res. 36(9): 2285–2299.
Duveneck M.J., Scheller R.M., and White M.A. 2014. Effects of alternative forest management on biomass and species diversity in the face of climate change in the northern Great Lakes region (USA). Can. J. For. Res. 44(7): 700–710.
Ek, A.R., Katovich, S.A., Kilgore, M.A., Palik, B.J., David, A., Domke, G., et al. 2006. Red pine management guide: a handbook to red pine management in the North Central Region. USDA Forest Service North Central Research Station, USDA Forest Service Northeastern State & Private Forestry, and University of Minnesota Department of Forest Resources.
Fei S., Desprez J.M., Potter K.M., Jo I., Knott J.A., and Oswalt C.M. 2017. Divergence of species responses to climate change. Sci. Adv. 3(5): e1603055.
Frelich L.E. and Reich P.B. 2010. Will environmental changes reinforce the impact of global warming on the prairie-forest border of central North America? Front. Ecol. Environ. 8(7): 371–378.
Galatowitsch S., Frelich L., and Phillips-Mao L. 2009. Regional climate change adaptation strategies for biodiversity conservation in a midcontinental region of North America. Biol. Conserv. 142(10): 2012–2022.
Gilmore, D.W., and Palik, B.J. 2006. A revised managers handbook for red pine in the North Central Region. Gen. Tech. Rep. NC-264. U.S. Department of Agriculture, Forest Service, North Central, St. Paul, Minn.
Handler, S., Duveneck, M.J., Iverson, L., Peters, E., Scheller, R.M., Wythers, K.R., et al. 2014. Minnesota forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project. Gen. Tech. Rep. NRS-133. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pa.
Harris J.A., Hobbs R.J., Higgs E., and Aronson J. 2006. Ecological restoration and global climate change. Restor. Ecol. 14: 170–171.
Hobbs R.J., Higgs E., Hall C.M., Bridgewater P., Chapin F.S. III, Ellis E.C., et al. 2014. Managing the whole landscape: historical, hybrid, and novel ecosystems. Front. Ecol. Environ. 12(10): 557–564.
Iverson L.R., Prasad A.M., Matthews S.N., and Peters M. 2008. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For. Ecol. Manage. 254(3): 390–406.
Iverson L.R., Thompson F.R., Matthews S., Peters M., Prasad A., Dijak W.D., et al. 2017. Multi-model comparison on the effects of climate change on tree species in the eastern US: results from an enhanced niche model and process-based ecosystem and landscape models. Landsc. Ecol. 32(7): 1327–1346.
Janowiak, M.K., Swanston, C.W., Nagel, L.M., Webster, C.R., Palik, B.J., Twery, M.J., et al. 2011. Silvicultural decisionmaking in an uncertain climate future: A workshop-based exploration of considerations, strategies, and approaches. Gen. Tech. Rep. NRS-81. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pa.
Janowiak M.K., Swanston C.W., Nagel L.M., Brandt L.A., Butler P.R., Handler S.D., et al. 2014. A practical approach for translating climate change adaptation principles into forest management actions. J. For. 112(5): 424–433.
Kemp K.B., Blades J.J., Klos P.Z., Hall T.E., Force J.E., Morgan P., and Tinkham W.T. 2015. Managing for climate change on federal lands of the western United States: perceived usefulness of climate science, effectiveness of adaptation strategies, and barriers to implementation. Ecol. Soc. 20(2): 17.
Kocher S.D., Toman E., Trainor S.F., Wright V., Briggs J.S., Goebel C.P., et al. 2012. How can we span the boundaries between wildland fire science and management in the United States? J. For. 110(8): 421–428.
Lachapelle P.R., McCool S.F., and Patterson M.E. 2003. Barriers to effective natural resource planning in a “messy” world. Soc. Nat. Resour. 16: 473–490.
Lenth, R.V. 2013. lsmeans: least-squares means. R package version 1.06-05.
Millar C.I., Stephenson N.L., and Stephens S.L. 2007. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17(8): 2145–2151.
Miner, C.L., Walters, N.R., and Belli, M.L. 1988. A guide to the TWIGS program for the North Central United States. General Technical Report NC-125. U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, Minn.
Minnesota Department of Natural Resources (MNDNR). 2003. Field guide to the native plant communities of Minnesota: the Laurentian mixed forest province. Ecological Land Classification Program, Minnesota County Biological Survey, and Natural Heritage and Nongame Research Program. Minnesota Department of Natural Resources, St. Paul, Minn.
Muller J.J., Nagel L.M., and Palik B.J. 2019. Forest adaptation strategies aimed at climate change: assessing the performance of future climate-adapted tree species in a northern Minnesota pine ecosystem. For. Ecol. Manage. 451: 117539.
Nagel L.M., Palik B.J., Battaglia M.A., D’Amato A.W., Guldin J.M., Swanston C.W., et al. 2017. Adaptive silviculture for climate change: a national experiment in manager-scientist partnerships to apply an adaptation framework. J. For. 115(3): 167–178.
Naumann, B., Chew, J., and Stewart, C. 1992. Target stands: a silvicultural vision of the future. In Getting to the Future Through Silviculture: Workshop Proceedings, Cedar City, UT, 6–9 May 1991. General Technical Report INT-291. United States Department of Agriculture, Forest Service, Intermountain Research Station, Fort Collins, Colo.
Palik B.J. and D’Amato A.W. 2019. Variable retention harvesting in Great Lakes mixed-pine forests: emulating a natural model in managed ecosystems. Ecol. Process. 8(1): 16.
Palik, B.J., D’Amato, A.W., Franklin, J.F., and Johnson, K.N. 2020. Silviculture of archetype4 ecosystems: forests with mixed-severity disturbances. In Ecological Silviculture: Foundations and Applications. Waveland Press, Long Grove, Ill. pp. 229–249.
Peterson, D.L., Millar, C.I., Joyce, L.A., Furniss, M.J., Halofsky, J.E., Neilson, R.P., and Morelli, T.L. 2011. Responding to climate change in national forests: a guidebook for developing adaptation options. Gen. Tech. Rep. PNW-GTR-855. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, Ore.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team. 2012. nlme: linear and nonlinear mixed effects models. R package version 3.
PRISM Climate Group. 2018. Recent years (Jan 1981–June 2018). Northwest Alliance for Computational Science Engineering (NACSE), Corvallis, Ore. Available from http://www.prism.oregonstate.edu/recent/ [Accessed 14 February 2019].
Puettmann K.J. and Ek A.R. 1999. Status and trends of silvicultural practices in Minnesota. North. J. Appl. For. 16(4): 203–210.
R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/.
Raymond P., Bédard S., Roy V., Larouche C., and Tremblay S. 2009. The irregular shelterwood system: review, classification, and potential application to forests affected by partial disturbances. J. For. 107(8): 405–413.
Reich P.B., Sendall K.M., Rice K., Rich R.L., Stefanski A., Hobbie S.E., and Montgomery R.A. 2015. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Clim. Change, 5(2): 148–152.
Richardson, D.M. 2000. Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, UK.
Stage, A.R. 1973. Prognosis model for stand development. Res. Pap. INT-137. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah.
Stinson S.D. 1999. 50 years of low thinning in second growth Douglas-fir. For. Chron. 75(3): 401–405.
Swanston, C.W., and Janowiak, M.K. 2016. Forest adaptation resources: climate change tools and approaches for land managers. Gen. Tech. Rep. NRS-87. US Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pa.
Troup, R.S. 1928. Silvicultural systems. Oxford University Press, Oxford, UK.
Woolsey, T.S., Jr., and Chapman, H.H. 1914. Norway pine in the Lake States. Bulletin No. 139. U.S. Department of Agriculture, Washington, D.C.
Wright, V. 2010. Influences to the success of fire science delivery: perspectives of potential fire/fuels science users. Final Report to the Joint Fire Sciences Program. JFSP Protect #04-4-2-01. Joint Fire Sciences Program, Boise, Id.

Supplementary Material

Supplementary data (cjfr-2021-0097suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 51Number 12December 2021
Pages: 1875 - 1887

Article versions

History

Received: 8 April 2021
Accepted: 10 June 2021
Accepted manuscript online: 15 June 2021
Version of record online: 15 June 2021

Permissions

Request permissions for this article.

Key Words

  1. silviculture
  2. forest modeling
  3. adaptive management
  4. climate change
  5. forest adaptation

Mots-clés

  1. sylviculture
  2. modélisation forestière
  3. aménagement adaptatif
  4. changements climatiques
  5. adaptation forestière

Authors

Affiliations

Jacob J. Muller* [email protected]
Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue N, Saint Paul, MN 55108, USA.
Linda M. Nagel
Forest and Rangeland Stewardship Department, Colorado State University, 1472 Campus Delivery, Fort Collins, CO 80523, USA.
Brian J. Palik
Northern Research Station, Forestry Sciences Laboratory, USDA Forest Service, 1831 Highway 169 E, Grand Rapids, MN 55744, USA.

Notes

*
Present address: Department of Forestry and Natural Resources, University of Kentucky, 204 TP Cooper Building, Lexington, KY 40546, USA.

Funding Information

:
Funding was provided by the Forest Resources Department and the Cloquet Forestry Center at the University of Minnesota, and the USDA Forest Service, Northern Research Station. Additional logistical support was provided by the Chippewa National Forest.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Influence of irregular shelterwood treatments on intensity and severity after a large wildfire in lodgepole pine stands: A case study from the interior British Columbia
2. What influences planted tree seedling survival in burned Colorado montane forests?
3. What Influences Planted Tree Seedling Survival in Burned Colorado Montane Forests?
4. Chapter 24 : Midwest. Fifth National Climate Assessment
5. Opportunities and limitations of thinning to increase resistance and resilience of trees and forests to global change

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media