Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

The recurring role of site challenges contemporary theories about regeneration under selection systems in northern hardwoods

Publication: Canadian Journal of Forest Research
15 September 2021

Abstract

In naturally regenerated managed forests, silvicultural methods leverage timing and intensity of harvesting activities to align with species-specific reproduction mechanisms. With contemporary emphasis on complex stand structure and diverse composition, there is uncertainty in the continued use of timber-oriented management practices in meeting evolving objectives. In the northern hardwood region of North America, contemporary theory is that selection regeneration systems result in homogenization of structure and composition through increasing dominance of Acer saccharum Marsh. Given the coupling of soils and vegetation in northern hardwoods, trends in site conditions that may be more resilient and (or) facilitative to community diversity may be of value to silviculturists. Remote-sensing products and inventory records were integrated to assess tree communities across site variables in northern Michigan, USA. The results reveal that composition is stabilized by local landforms and that diversity increases with hydrologic catchment area. Time since treatment (1–54 years) appeared negatively correlated with catchment area, reflecting lowlands with high diversity not managed or harvested infrequently, due to equipment access and operational logistics. Broad interpretations of selection regeneration systems may be invalidated by the influence of site conditions not previously accounted for, and the results highlight a novel technique to capture the effect of topography on species assemblages.

Résumé

Dans les forêts aménagées qui sont naturellement régénérées, les méthodes sylvicoles ajustent le calendrier et l’intensité des activités de récolte pour qu’elles concordent avec les mécanismes de reproduction des espèces. Puisqu’on met présentement l’accent sur la complexité de la structure des peuplements et la diversité de leur composition, il n’est pas certain que de continuer à utiliser des pratiques d’aménagement axées sur la production de bois permette d’atteindre des objectifs en évolution. Dans la région des feuillus nordiques de l’Amérique du Nord, la théorie contemporaine veut que les systèmes de régénération par jardinage mènent à une homogénéisation de la structure et de la composition à cause de la dominance croissante d’Acer saccharum Marsh. Parce que les sols et la végétation sont intimement liés dans les peuplements de feuillus nordiques, les tendances faisant en sorte que les conditions de la station peuvent être plus résilientes ou facilitantes pour la diversité de la communauté pourraient être utiles aux sylviculteurs. Des outils de télédétection et des données d’inventaire ont été intégrés pour évaluer les communautés forestières selon une gamme de variables de la station dans le nord du Michigan, aux États-Unis. Les résultats révèlent que la composition est stabilisée par les reliefs locaux et que la diversité augmente avec la superficie du bassin versant. Le temps écoulé depuis l’application d’un traitement (entre 1 et 54 ans) est apparu négativement corrélé à la superficie du bassin versant, reflétant que les basses terres où la diversité est élevée ne sont pas aménagées ou rarement récoltées en raison de l’accès des équipements et de la logistique opérationnelle. L’interprétation générale des systèmes de régénération par jardinage peut être invalidée par l’influence des conditions de la station qui n’ont pas été prises en compte auparavant, et les résultats mettent en évidence une nouvelle technique pour détecter l’effet de la topographie sur les assemblages d’espèces. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Aaseng, N.E., Almendinger, J.C., Dana, R.P., Hanson, D.S., Lee, M.D., Rowe, E.R., et al. 2011. Minnesota’s native plant community classification: a statewide classification of terrestrial and wetland vegetation based on numerical analysis of plot data. Minn. Dept. Nat. Res. Rep. (108.)
Anderson M.J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62(1): 245–253.
Arbogast, C., Jr. 1957. Marking guides for northern hardwoods under the selection system. USDA For. Serv. Lake States For. Expt. Stn., Stn. Pap. 56.
Arguez, A., Durre, I., Applequist, S., Squires, M., Vose, R., Yin, X., and Bilotta, R. 2010. NOAA’s U.S. climate normals (1981–2010). NOAA National Centers for Environmental Information, Alberta, Michigan.
Barnes, B.V., Zak, D.R., Denton, S.R., and Spurr, S.H. 1998. Forest ecology. 4th ed. Wiley & Sons Publishing. New York, NY.
Bartón, K. 2020. MuMIn: Multi-model inference. R package version 1.43.17. Available from https://CRAN.R-project.org/package=MuMIn.
Benjamin J.G., Seymour R.S., Meacham E., and Wilson J. 2013. Impact of whole-tree and cut-to-length harvesting on postharvest condition and logging costs for early commercial thinnings in Maine. North. J. Appl. For. 30(4): 149–155.
Beven K.J. and Kirkby M.J. 1979. A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24: 43–69.
Binkley D. and Giardina C. 1998. Why do tree species affect soils? The warp and woof of tree–soil interactions. Biogeochemistry, 42: 89–106.
Biven, R., Nowosad, J., and Lovelace, R. 2021. spData. R package version 0.3.10. https://cran.r-project.org/web/packages/spData/index.html
Bohlen P.J., Scheu S., Hale C.M., McLean M.A., Migge S., Groffman P.M., and Parkinson D. 2004. Non-native invasive earthworms as agents of change in northern temperate forests. Front. Ecol. Environ. 2(8): 427–435.
Boisvert-Marsh L., Périé C., and de Blois S. 2019. Divergent responses to climate change and disturbance drive recruitment patterns underlying latitudinal shifts in tree species. J. Ecol. 107(4): 1–14.
Bolstad P.V., Swank W., and Vose J. 1998. Predicting Southern Appalachian overstory vegetation with digital terrain data. Land. Ecol. 13: 271–283.
Bolstad P.V. and Lillesand T.M. 1992. Improved classification of forest vegetation in northern Wisconsin through a rule-based combination of soils, terrain, and Landsat thematic mapper data. For. Sci. 38(1): 5–20.
Bourdo, E.A. 1957. Plan for the establishment of 1956 stocking level management studies in “selectively cut” northern hardwoods and a brief outline of associated terminal studies. Michigan Technological University. Ford Forestry Center. L’Anse Michigan.
Bravo-Oviedo A., Pretzsch H., Ammer C., Andenmatten E., Barbati A., Barreiro S., et al. 2014. European Mixed Forests: definition and research perspectives. Forest Syst. 23: 518–533.
Burger, T.L., and Kotar, J. 2003. A guide to forest communities and habitat types of Michigan. Department of Forest Ecology and Management. University of Wisconsin-Madison, Madison, Wis., USA.
Burton P.J. 1993. Some limitations inherent to static indices of plant competition. Can. J. For. Res. 23(10): 2141–2152.
Cajander A.K. 1926. The theory of forest site types. Acta Forestalia Fennica, 29(3): 7193.
Carmean, W.H. 1977. Site classification for northern forest species. USDA For. Serv. Gen. Tech. Rep. NE-29. 205-239.
Cleavitt N.L., Battles J.J., Johnson C.E., and Fahey T.J. 2018. Long-term decline of sugar maple following harvest, Hubbard Brook Experimental Forest, New Hampshire. Can. J. For. Res. 48: 23–31.
Coffman M.S. and Willis G.L. 1977. The use of indicator species to classify climax sugar maple and eastern hemlock forests in upper Michigan. For. Ecol. Manage. 1: 149–168.
Conway, S. 1982. Logging practices: principles of timber harvesting systems. Miller Freeman Publications. San Francisco, California.
Crow T.R., Buckley D.S., Naurertz E.A., and Zasada J.C. 2002. Effects of management on the composition and structure of northern hardwood forests in Upper Michigan. For Sci. 48(1): 129–145.
Curtis, R.O., and Marshall, D.D. 2005. Permanent-plot procedures for silvicultural and yield research. USFS For. Serv. Gen. Tech. Rep. 634.
Curzon M.T., D’Amato A.W., Fraver S., Palik B.J., Bottero A., Foster J.R., and Gleason K.E. 2017. Harvesting influences functional identity and diversity over time in forests of the northeastern U.S.A. For. Ecol. Manage. 400: 93–99.
Daubenmire R. 1976. The use of vegetation in assessing productivity of forest lands. Bot. Rev. 42(2): 115–143.
Davis, M.B. 1983. Holocene vegetational history of the eastern United States. In Late Quaternary Environments of the United States. Vol. II. Edited by H.E. Wright, Jr. University of Minnesota Press, Minneapolis, Minn., USA. pp. 166–181.
De Reu J., Bourgeois J., Bats M., Zwertvaegher A., Gelorini V., De Smedt P., et al. 2013. Application of the topographic position index to heterogeneous landscapes. Geomorphology, 186: 39–49.
Doonan, C.J., and Byerlay, J.R. 1973. Water investigation 11. Ground water and geology of Baraga County, Michigan. Michigan Dept. Nat. Res. Geo. Surv. Div.
Draper M. and Froese R.E. 2021. Six decades of growth and yield and financial return in a silviculture experiment in northern hardwoods. For. Sci.
Ek, A.R. 1974. Dimensional relationships of forest and open grown trees in Wisconsin. Univ. Of Wisc- Mad. For. Res. No. 7 p.
Erdmann, G.G. 1990. Betula alleghaniensis (Britton). In Silvics of North America, volume 2. Hardwoods. Edited by R.M. Burns and B.H. Honkala. USDA Agriculture Handbook 654. pp. 133–147.
Fahey R.T., Alveshere B.C., Burton J.I., D’Amato A.W., Dickinson Y.L., Keeton W.S., et al. 2018. Shifting conceptions of complexity in forest management and silviculture. For. Ecol. Manage. 421: 59–71.
Fox, J., Weisberg, S., and Price, B. 2021. car: companion to applied regression. R package version 3.0-10. Available from https://cran.r-project.org/web/packages/car/index.html.
Frank, R.M. 1990. Abies balsamea. In Silvics of North America, volume 2. Hardwoods. Edited by R.M. Burns and B.H. Honkala. USDA Agriculture Handbook 654. pp. 26–35.
Füldner K. 1995. Zur Strukturbeschreibung in Mischbeständen. Forstarchiv, 66: 235–240.
Gartlan J.S., Newberry D.M., Thomas D.W., and Waterman P.G. 1986. The influence of topography and soil phosphorus on the vegetation of Korup Forest Reserve. Cameroun. Veg. 65(3): 131–148.
Gauthier M.M., Lambert M.C., and Bédard S. 2016. Effects of harvest gap size, soil scarification, and vegetation control in regeneration dynamics in sugar maple–yellow birch stands. For Sci. 62(2): 237–246.
Gebuhr, T.J. 2013. Applications of LiDAR remote sensing of forest structure in the Upper Great Lakes Region, USA. M.Sc. Thesis. Mich. Tech. Univ.
Goldblum D. and Rigg L.S. 2010. The deciduous forest — boreal forest ecotone. Geo. Comp. 4(7): 701–717.
Guilbert E. and Moulin B. 2017. Towards a common framework for the identification of landforms on terrain models. Int. J. Geo-Info. 6(12): 12.
Henne P.D., Hu F.S., and Cleland D.T. 2007. Lake-effect snow as the dominant control of mesic-forest distribution in Michigan, USA. J. Ecol. 95: 517–529.
Henry C.R., Walters M.B., Finley A.O., Roloff G.J., and Farinosi E.J. 2021. Complex drivers of sugar maple (Acer saccharum) regeneration reveal challenges to long-term sustainability of managed northern hardwood forests. For. Ecol. Manag. 479: 118541.
Hervé, M. 2021. RVAideMemoire. Testing and plotting procedures for biostatistics. R package version 0.9-79. Available from https://cran.r-project.org/web/packages/RVAideMemoire/index.html.
Hijmans, R.J. 2020. raster: Geographic data analysis and modeling. R package version 3.4-5. Available from http://cran.r-project.org/package=raster.
Hills, G.A. 1952. The classification and evaluation of site for forestry. Ontario Dept. La. & For. Res. Rep. 24.
Hills G.A. 1960. Regional site research. For. Chron. 36(4): 401–423.
Host G.E., Pregitzer K.S., Ramm C.W., Hart J.B., and Cleland D.T. 1987. Landform-mediated differences in successional pathways among upland forest ecosystems in northwestern lower Michigan. For. Sci. 33(2): 445–457.
Hupperts S.F., Dickinson Y.L., Webster C.R., and Kern C.C. 2019. Promoting structural and species diversity in Great Lakes northern hardwoods: a conceptual model and its application. Forestry, 92(1): 16–25.
Hupperts S.F., Webster C.R., Froese R.E., and Dickinson Y.L. 2020. Seedling and sapling recruitment following novel silvicultural treatments in Great Lakes northern hardwoods. For. Ecol. Manage. 462: 117983.
Huyler, N.K., and LeDoux, C.B. 1999. Performance of a cut-to-length harvester in a single-tree and group selection cut. USDA For. Serv. Res. Pap. NE-711.
Iverson L.R., Prasad A.M., Peters M.P., and Matthews S.N. 2019. Facilitating adaptive forest management under climate change: a spatially specific synthesis of 125 species for habitat changes and assisted migration over the Eastern United States. Forestry, 10(11): 989.
Jones, S.M. 1991. Landscape ecosystem classification for South Carolina. In Proc. Ecological Land Classification: Applications to identify the productive potential of southern forests. Edited by D.L. Mengel and D.T. Tew. USDA For. Serv. Gen. Tech. Rep. SE-68.
Jost L. 2006. Entropy and diversity. Oikos, 113(2): 363–375.
Kern C.C., D’Amato A.W., and Strong T.F. 2013. Diversifying the composition and structure of managed late-successional forests with harvest gaps: What is the optimal gap size? For. Ecol. Manag. 304: 110–120.
Kern C.C., Burton J.I., Raymond P.B., D’Amato A.W., Keeton W.S., Royo A.A., et al. 2017. Challenges facing gap-based silviculture and possible solutions for mesic northern forests in North America. Forestry, 90: 4–17.
Klingsporn-Poznanovic S., Webster C.R., and Bump J.K. 2013. Maintaining mid-tolerant tree species with uneven-aged forest management: 9-year results from a novel group-selection experiment. Forestry, 86(5): 555–567.
Knapp S.P., Webster C.R., and Kern C.C. 2019. Can group selection with legacy retention change compositional trajectories in conventionally managed hardwoods? For. Ecol. Manag. 448: 174–186.
Knapp S.P., Kern C.C., and Webster C.R. 2021. Harvested opening size affects cohort development and failures in a second-growth northern hardwood forest. For. Ecol. Manage. 482(4): 10 p.
Kotar J. 1986. Soil-habitat type relationships in Michigan and Wisconsin. J. Soil Water Conserv. 41(5): 348–350.
Krajicek J., Brinkman K., and Gingrich S. 1961. Crown competition — a measure of density. For. Sci. 7: 35–42.
Larson E.R., Kipfmueller K.F., Hale C.M., Frelich L.E., and Reich P.B. 2010. Tree rings detect earthworm invasions and their effects in northern hardwood forests. Biol. Invasions, 12: 1053–1066.
Leak, W.B., and Yamasaki. M. 2010. Seventy-year record of changes in the composition of overstory species by elevation on the Bartlett Experimental Forest. U.S. For. Serv. Res. Pap. NRS-13.
Lippok D., Beck S.G., Renison D., Hensen I., Apaza A., and Schleuning M. 2013. Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. J. Veg. Sci. 25(3): 724–733.
Liu L., Zeng F., Song T., Wang K., and Du H. 2020. Stand structure and abiotic factors modulate Karst forest biomass in Southwest China. Forest, 11(4): 443.
Lumley, T. 2020. Leaps: regression subset selection, including exhaustive search. R package version 3.1.0. Available from https://CRAN.R-project.org/package=leaps.
Marquis, D.A. 1965. Controlling light in small clearcuttings. U.S. For. Serv. Res. Rep. NE-39.
Marquis, D.A. 1969. Silvical requirements for natural birch regeneration. In Birch symposium proceedings. Edited by W.T. Doolittle and W.T. Bruns. U.S.D.A. For. Serv. NE-FES: 40-49.
McCune, B., and Grace, J. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach OR, USA.
McNab, W.H., and Avers, P.E. 1995. Ecological subregions of the United States: section descriptions. WOWSA-5. 1994. Washington, DC: U.S.D.A. For. Serv. WO-WSA-5.
Miller K.M., McGill B.J., Mitchell B.R., Comiskey J., Dieffenbach F.W., Matthews E.R., et al. 2018. Eastern national parks protect greater tree species diversity than unprotected matrix forests. For. Ecol. Mange. 414: 74–84.
Nagamatsu D. and Miura O. 1997. Soil disturbance regime in relation to micro-scale landform and its effects on vegetation structure in a hilly area in Japan. Plant Ecol. 133: 191–200.
Nagamatsu D., Hirabuki Y., and Mochida Y. 2003. Influence of mico-landforms on forest structure, tree death and recruitment in a Japanese temperate mixed forest. Ecol. Res. 18: 533–547.
Natural Resource Conservation Service. 2021. Soil Survey Staff. United States Department of Agriculture. Web Soil Survey. Available from http://websoilsurvey.sc.egov.usda.gov/ [accessed 10 January 2021].
Neuendorff J.K., Nagel L.M., Webster C.R., and Janowiak M.K. 2007. Stand structure and composition in a northern hardwood forest after 40 years of single-tree selection. North. J. Appl. For. 24(3): 197–202.
Nyland, R.D. 2002. Silviculture. Concepts and applications. 2nd ed. Waveland Press. Long Grove, IL.
Oksanen, J. 2020. vegan: Community Ecology Package. R package version 2.5-7. Available from https://cran.r-project.org/web/packages/vegan/index.html.
Pfister R.D. and Arno S.F. 1980. Classifying forest habitats based on potential climax vegetation. For. Sci. 26: 52–70.
Pregitzer K.S., Barnes B.V., and Lemme G.D. 1983a. Relationship of topography to soils and vegetation in an Upper Michigan Ecosystem. Soil Sci. Am J. 47: 117–123.
Pregitzer, K.S., Barnes, B.V., Spies, T.A., and Spooner, V. 1983b. Ecological forest site classification and mapping in the McCormick Experimental Forest, Upper Michigan. In IUFRO Symposium on Forest Site and Continuous Productivity. Edited by R. Ballard and S.P. Gessel. Seattle, WA USDA For. Serv. Gen. Tech. Rep. PNW-163. pp. 36–45.
Premer M.I. and Froese R.E. 2018. Incidental effects of cut-to-length harvest systems and residue management on Populus tremuloides (Michx.) regeneration and yield. For. Sci. 64: 442–451.
PRISM Climate Group. 2021. Oregon State University. Available from http://prism.oregonstate.edu [accessed 5 January 2021].
Puettmann, K.J., Coates, K.D., and Messier, C.C. 2009. A critique of silviculture: Managing for complexity. Island Press, Washington.
R Core Team. 2020. R: a language and environment for statistical computing. Version 4.0.3 [computer program]. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org.
Reed K.L. 1980. An ecological approach to modeling growth of forest trees. For. Sci. 26(1): 33–50.
Ricart R.D., Pearsall D.R., and Curtis P.S. 2020. Multidecadal shifts in forest plant diversity and community composition across glacial landforms in northern lower Michigan, USA. Can. J. For. Res. 50: 126–135.
Riley S.J., DeGloria S.D., and Elliot R. 1999. A terrain ruggedness index that quantifies topographic heterogeneity. Int. J. Sci. 5(1–4): 23–27.
Rogers N.S., D’Amato A.W., and Leak W.B. 2021. Long-term evolution of composition and structure after repeated group selection over eight decades. Can. J. For. Res. 51: 1080–1091.
Sabo A.E., Forrester J.A., Burton J.I., Jones P.D., Mladenoff D.J., and Kruger E.L. 2019. Ungulate exclusion accentuates increases in woody species richness and abundance with canopy gap creation in a temperate hardwood forest. For. Ecol. Manage. 433: 386–395.
Scharenbroch B.C. and Bockheim J.G. 2007. Pedodiversity in an old-growth northern hardwood forest in the Huron Mountains, Upper Peninsula, Michigan. Can. J. For. Res. 37: 1106–1107.
Schuler T.M., Thomas-Van Gundy M.A., Brown J.P., and Widenbeck J.K. 2017. Managing Appalachian hardwood stands using four management practices: 60-year results. For. Ecol. Manage. 387: 3–11.
Shabaga J.A., Jones T.A., and Elliott K.A. 2019. Group-selection silviculture conditionally enhances recruitment of yellow birch in a shade-tolerant hardwood forest. For. Ecol. Manage. 444: 244–255.
Shannon C.E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27: 379–423.
Shields J.M., Webster C.R., and Nagel L.M. 2007. Factors influencing tree species diversity and Betula alleghaniensis establishment in silvicultural openings. Forestry, 80(3): 293–307.
Smith, P., and Metcalfe, P. 2018. dynatop: an implementation of the dynamic TOPMODEL Hydrologic Model in R. Available from https://cran.r-project.org/web/packages/dynatop/index.html.
Swanson F.J., Kratz T.K., Caine N., and Woodmansee R.G. 1988. Landform effects on ecosystem patterns and processes. Bioscience, 38(2): 92–98.
Tubbs, C.H. 1969. Natural regeneration of yellow birch in the Lake States. In Birch symposium proceedings. Edited by W.T. Doolittle and P.E. Bruns. USDA For. Serv. N.E. For. Exp. Stn.
Tubbs, C.H. 1996. Aspects of eastern hemlock silvics important in silviculture: an overview. In Proceedings, Hemlock ecology and management: regional conference on ecology and management of eastern hemlock. Edited by G. Mroz and J. Martin. Dept. For., Sch. Nat. Res., Univ. Wis.
Von Gadow K. 1993. Zur Bestandesbeschreibung in der Forsteinrichtung. Forst und Holz. 48: 601–606.
Wang W., McDowell N.G., Pennington S., Grossiord C., Leff R.T., Sengupta A., et al. 2020. Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer rubrum) trees in a coastal forest. Agric. For. Meteorol. 295: 108163.
Webster C.R. and Jensen N.R. 2007. A shift in the gap dynamics of Betula alleghaniensis in response to single-tree selection. Can. J. For. Res. 37(3): 682–689.
Webster C.R. and Lorimer C.G. 2005. Minimum opening sizes for canopy recruitment of midtolerant tree species: a retrospective approach. Eco. App. 15(4): 1245–1262.
Wickham, H. 2016. ggplot2: Create elegant data visualization using the grammar of graphics. Available from https://cran.r-project.org/web/packages/ggplot2/.
Wilke, C.O. 2021. cowplot: Streamlined plot theme and plot annotation for ‘ggplot2’. Available from https://cran.r-project.org/web/packages/cowplot/index.html.
Willis J.L., Walters M.B., and Gottschalk K.W. 2015. Scarification and gap size have interacting effects on northern temperate seedling establishment. For Ecol. Manage. 347: 237–247.
Woods K.D. 2004. Intermediate disturbance in a late-successional hemlock-northern hardwood forest. J. Ecol. 92: 464–476.
Wright, J.W., and Rauscher, M. 1990. Fraxinus nigra (Marsh.). In Silvics of North America, Volume 2. Hardwoods. Edited by R.M. Burns and B.H. Honkala. USDA Agriculture Handbook 654. pp. 344–347.
Wykoff, W.R., Crookston, N.L., and Stage, A.R. 1982. User’s guide to the Stand Prognosis Model. USDA For. Serv. Gen. Tech. Rep. INT-133.

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 52Number 4April 2022
Pages: 463 - 473

History

Received: 21 June 2021
Accepted: 10 September 2021
Accepted manuscript online: 15 September 2021
Version of record online: 15 September 2021

Permissions

Request permissions for this article.

Key Words

  1. northern hardwoods
  2. single-tree selection
  3. group selection
  4. site
  5. silviculture

Mots-clés

  1. feuillus nordiques
  2. jardinage par pied d’arbre
  3. jardinage par groupe
  4. station
  5. sylviculture

Authors

Affiliations

M.I. Premer [email protected]
Research, Productivity, and Sustainability, Rayonier U.S. Forest Resources, 3033 Ingram Street, Hoquiam, WA 98550, USA.
R.E. Froese*
School of Forest Science and Management, University of Alberta, 751 General Services Building, Edmonton, AB T6G 2H1, Canada.

Notes

*
R.E. Froese served as an Associate Editor at the time of manuscript review and acceptance; peer review and editorial decisions regarding this manuscript were handled by Joseph Antos.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Incorporating Climate Adaptation into a Forest Management Plan: A Case Study on the Research and Teaching Forest of Michigan Technological University
2. An experimental approach to identify drivers of tree regeneration diversity, composition, and heterogeneity in northern hardwood forests
3. Long-term stability of northern hardwoods across a topographic gradient and variations in harvest methods

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media