Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Peat surface compression reduces smouldering fire potential as a novel fuel treatment for boreal peatlands

Publication: Canadian Journal of Forest Research
22 November 2021

Abstract

The wildfire regime in Canada’s boreal region is changing; extended fire seasons are characterized by more frequent large fires (≥200 ha) burning greater areas of land, whilst climate-mediated drying is increasing the vulnerability of peatlands to deep burning. Proactive management strategies, such as fuel modification treatments, are necessary to reduce fire danger at the wildland–human interface (WHI). Novel approaches to fuel management are especially needed in peatlands where deep smouldering combustion is a challenge to suppression efforts and releases harmful emissions. Here, we integrate surface compression within conventional stand treatments to examine the potential for reducing smouldering of near-surface moss and peat. A linear model (adj. R2 = 0.62, p = 2.2e−16) revealed that ground cover (F[2,101] = 60.97, p < 0.001) and compression (F[1,101] = 56.46, p < 0.001) had the greatest effects on smouldering potential, while stand treatment did not have a significant effect (F[3,101] = 0.44, p = 0.727). On average, compressed Sphagnum and feather moss plots showed 57.1% and 58.7% lower smouldering potential, respectively, when compared to uncompressed analogs. While practical evaluation is warranted to better understand the evolving effectiveness of this strategy, these findings demonstrate that a compression treatment can be successfully incorporated within both managed and unmanaged peatlands to reduce fire danger at the WHI.

Résumé

Le régime des feux de forêt dans la zone boréale canadienne subit des changements : les saisons des feux qui se prolongent sont caractérisées par la fréquence plus élevée de grands feux (≥ 200 ha) qui brûlent de plus grandes superficies du territoire, tandis que l’assèchement dû au climat augmente la vulnérabilité des tourbières à la combustion en profondeur. Des stratégies proactives d’aménagement, telles que les traitements de modification des combustibles, s’imposent pour réduire les risques d’incendie à l’interface entre la forêt et la civilisation. De nouvelles approches de gestion des combustibles sont particulièrement nécessaires dans les tourbières où la combustion couvante en profondeur constitue un défi pour les efforts de suppression et produit des émissions nocives. Dans cet article, nous intégrons la compression de la surface aux traitements conventionnels du peuplement pour étudier la possibilité de réduire le feu couvant dans la mousse et la tourbe près de la surface. Un modèle linéaire (R2 raj. = 0,62, p = 2,2e−16) a montré que le couvert végétal (F[2,101] = 60,97, p < 0,001) et la compression (F[1,101] = 56,46, p < 0,001) avaient le plus d’effet sur la possibilité d’un feu couvant, alors que le traitement du peuplement n’a eu aucun effet significatif (F[3,101] = 0,44, p = 0,727). En moyenne, les parcelles comprimées de sphaigne et d’hypne avaient un potentiel de feu couvant respectivement 57,1 et 58,7 % plus faible comparativement à des parcelles similaires non comprimées. Bien qu’une évaluation pratique soit nécessaire pour comprendre comment évolue l’efficacité de cette stratégie, ces résultats démontrent qu’un traitement de compression peut être incorporé avec succès tant dans les tourbières aménagées que non aménagées pour réduire le risque d’incendie à l’interface entre la forêt et la civilisation.

Get full access to this article

View all available purchase options and get full access to this article.

References

Benjamini Y. and Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57(1): 289–300.
Benscoter B.W., Thompson D.K., Waddington J.M., Flannigan M.D., Wotton B.M., De Groot W.J., and Turetsky M.R. 2011. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils. Int. J. Wildl. Fire, 20(3): 418–429.
Bisbee K.E., Gower S.T., Norman J.M., and Nordheim E.V. 2001. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia, 129(2): 261–270.
Carleton T.J. and Dunham K.M. 2003. Distillation in a boreal mossy forest floor. Can. J. For. Res. 33(4): 663–671.
Dabros A., Pyper M., and Castilla G. 2018. Seismic lines in the boreal and arctic ecosystems of North America: environmental impacts, challenges, and opportunities. Environ. Rev. 26(2): 214–229.
Deane P.J., Wilkinson S.L., Moore P.A., and Waddington J.M. 2020. Seismic lines in treed boreal peatlands as analogs for wildfire fuel modification treatments. Fire, 3(2): 21.
Fenton N.J. and Bergeron Y. 2007. Sphagnum community change after partial harvest in black spruce boreal forests. For. Ecol. Manag. 242(1): 24–33.
Flannigan M., Stocks B., Turetsky M., and Wotton M. 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biol. 15(3): 549–560.
Flat Top Complex Wildfire Review Committee. 2012. Flat Top Complex: Final Report from the Flat Top Complex Wildfire Review Committee. Alberta Ministry of Environment and Sustainable Resource Development, May 2012, Edmonton, Alberta.
Frandsen W.H. 1991. Burning rate of smoldering peat. Northwest Sci. 65: 166–172.
Gauthier T.L.J., McCarter C.P., and Price J.S. 2018. The effect of compression on Sphagnum hydrophysical properties: Implications for increasing hydrological connectivity in restored cutover peatlands. Ecohydrology, 11(8): e2020.
Golubev V. and Whittington P. 2018. Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss. J. Hydrol. 559: 884–894.
Granath G., Moore P.A., Lukenbach M.C., and Waddington J.M. 2016. Mitigating wildfire carbon loss in managed northern peatlands through restoration. Sci. Rep. 6(1): 1–9.
Hanes C.C., Wang X., Jain P., Parisien M., Little J.M., and Flannigan M.D. 2019. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 49(3): 256–269.
Hassel K., Kyrkjeeide M.O., Yousefi N., Prestø T., Stenøien H.K., Shaw J.A., and Flatberg K.I. 2018. Sphagnum divinum (sp. nov.) and S. medium Limpr. and their relationship to S. magellanicum Brid. J. Bryol. 40(3): 197–222.
Hayward P.M. and Clymo R.S. 1982. Profiles of water content and pore size in Sphagnum and peat, and their relation to peat bog ecology. Proc. R. Soc. Ser. B Biol. Sci. 215(1200): 299–325.
Huang X. and Rein G. 2017. Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply. Int. J. Wildl. Fire, 26(11): 907–918.
Johnston, L., Blanchi, R., and Jappiot, M. 2019. Wildland–urban interface. In Encyclopedia of wildfires and wildland–urban interface (wui) fires. Edited by S. Manzello. Springer, Cham.
Johnston, M., Williamson, T., Wheaton, E., Wittrock, V., Nelson, H., Van Damme, L., et al. 2008. Climate change adaptive capacity of forestry stakeholders in the Boreal Plains ecozone. Final report submitted to Natural Resources Canada’s Climate Change Impacts and Adaptation Program, Ottawa, Ont. SRC Publication No. 12306-3C08. Saskatchewan Research Council, Saskatoon, Sask. Available from https://cfs.nrcan.gc.ca/publications/download-pdf/33429 [accessed December 2020].
Krieger Filho G.C., Bufacchi P., Costa F., Cortez E.V., Andrade J.C., Ribeiro K., and de Souza Costa F. 2021. Smoldering characteristics of high bulk density peat. Proc. Combust. Inst. 38(3): 5053–5062.
Leonard R., Kettridge N., Krause S., Devito K.J., Granath G., Petrone R., et al. 2017. Peatland bryophyte responses to increased light from black spruce removal. Ecohydrology, 10(1): e1804.
Lukenbach M.C., Hokanson K.J., Moore P.A., Devito K.J., Kettridge N., Thompson D.K., et al. 2015. Hydrological controls on deep burning in a northern forested peatland. Hydrol. Processes, 29(18): 4114–4124.
Marshall G., Thompson D.K., Anderson K., Simpson B., Linn R., and Schroeder D. 2020. The impact of fuel treatments on wildfire behavior in North America boreal fuels: a simulation study using FIRETEC. Fire, 3(2): 18.
Maxwell K. and Johnson G.N. 2000. Chlorophyll fluorescence — a practical guide. J. Exp. Bot. 51(345): 659–668.
Miyanishi K. and Johnson E.A. 2002. Process and patterns of duff consumption in the mixedwood boreal forest. Can. J. For. Res. 32(7): 1285–1295.
National Wetlands Working Group. 1997. The Canadian Wetland Classification System. 2nd ed. Edited by B.G. Warner and C.D.A. Rubec. The Wetlands Research Centre, University of Waterloo, Waterloo, Ontario. Available from http://www.gret-perg.ulaval.ca/a-propos/documentation-generale-sur-les-tourbieres/autres-documents-utiles-sur-les-tourbieres/ [accessed December 2020].
Partners in Protection (Canada). 2003. FireSmart: Protecting your community from wildfire. 2nd ed. Maryhelen Vicars, Edmonton, Alberta.
Podur J. and Wotton B.M. 2010. Will climate change overwhelm fire management capacity. Ecol. Model. 221(9): 1301–1309.
Price J.S. and Whittington P.N. 2010. Water flow in Sphagnum hummocks: Mesocosm measurements and modelling. J. Hydrol. 381(3–4): 333–340.
Rappold A.G., Stone S.L., Cascio W.E., Neas L.M., Kilaru V.J., Carraway M.S., et al. 2011. Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environ. Health Perspect. 119(10): 1415–1420.
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/.
Rein, G., and Belcher, C.M. 2013. Smouldering fires and natural fuels. In Fire phenomena and the Earth system: an interdisciplinary guide to fire science. Wiley. pp. 15–33.
Rein G., Cleaver N., Ashton C., Pironi P., and Torero J.L. 2008. The severity of smouldering peat fires and damage to the forest soil. Catena, 74(3): 304–309.
Riva F., Pinzon J., Acorn J.H., and Nielsen S.E. 2020. Composite effects of cutlines and wildfire result in fire refuges for plants and butterflies in boreal treed peatlands. Ecosystems, 23: 485–497.
Schiks T., Thompson D.K., and Wotton B.M. 2015. Short-term effects of mastication on fuel moisture and thermal regime of boreal fuel beds. Can. J. For. Res. 45(7): 867–876.
Shields J.M., Webster C.R., and Glime J.M. 2007. Bryophyte community response to silvicultural opening size in a managed northern hardwood forest. For. Ecol. Manag. 252(1–3): 222–229.
Strack M., Hayne S., Lovitt J., McDermid G.J., Rahman M.M., Saraswati S., and Xu B. 2019. Petroleum exploration increases methane emissions from northern peatlands. Nat. Commun. 10(1): 1–8.
Thompson D.K., Schroeder D., Wilkinson S.L., Barber Q., Baxter G., Cameron H., et al. 2020. Recent crown thinning in a boreal black spruce forest does not reduce spread rate nor total fuel consumption: results from an experimental crown fire in Alberta, Canada. Fire, 3(3): 28.
Turetsky M.R., Kane E.S., Harden J.W., Ottmar R.D., Manies K.L., Hoy E., and Kasischke E.S. 2011. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4(1): 27–31.
Turetsky M.R., Baltzer J.L., Johnstone J.F., Mack M.C., McCann K., and Schuur E.A. 2017. Losing legacies, ecological release, and transient responses: Key challenges for the future of northern ecosystem science. Ecosystems, 20(1): 23–30.
Van Wagner C.E. 1972. Duff consumption by fire in eastern pine stands. Can. J. For. Res. 2(1): 34–39.
Vitt D.H., Halsey L.A., Bauer I.E., and Campbell C. 2000. Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Can. J. Earth Sci. 37(5): 683–693.
Waddington J.M., Morris P.J., Kettridge N., Granath G., Thompson D.K., and Moore P.A. 2015. Hydrological feedbacks in northern peatlands. Ecohydrology, 8(1): 113–127.
Wilkinson S.L., Moore P.A., Flannigan M.D., Wotton B.M., and Waddington J.M. 2018a. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environ. Res. Lett. 13(1): 014018.
Wilkinson S.L., Moore P.A., Thompson D.K., Wotton B.M., Hvenegaard S., Schroeder D., and Waddington J.M. 2018b. The effects of black spruce fuel management on surface fuel condition and peat burn severity in an experimental fire. Can. J. For. Res. 48(12): 1433–1440.
Wilkinson S.L., Moore P.A., and Waddington J.M. 2019. Assessing drivers of cross-scale variability in peat smoldering combustion vulnerability in forested boreal peatlands. Front. For. Global Change, 2: 84.
Wilkinson S.L., Furukawa A.K., Wotton B.M., and Waddington J.M. 2021. Mapping smouldering fire potential in boreal peatlands and assessing interactions with the wildland–human interface in Alberta, Canada. Int. J. Wildl. Fire, 30: 552–563.
Wotton B.M., Nock C.A., and Flannigan M.D. 2010. Forest fire occurrence and climate change in Canada. Int. J. Wildl. Fire, 19(3): 253–271.
Wotton B.M., Flannigan M.D., and Marshall G.A. 2017. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 12(9): 095003.
Zhu X., Nimmo V., Wu J., and Thomas R. 2019. Sphagnum outcompetes feathermosses in their photosynthetic adaptation to postharvest black spruce forests. Botany, 97(11): 585–597.

Supplementary Material

Supplementary data (cjfr-2021-0183suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 52Number 3March 2022
Pages: 396 - 405

History

Received: 25 June 2021
Accepted: 28 October 2021
Accepted manuscript online: 22 November 2021
Version of record online: 22 November 2021

Permissions

Request permissions for this article.

Key Words

  1. compression
  2. fuel treatments
  3. peatland
  4. smouldering
  5. wildfire

Mots-clés

  1. compression
  2. traitements des combustibles
  3. tourbière
  4. feu couvant
  5. feu de forêt

Authors

Affiliations

School of Earth, Environment and Society, McMaster University, Hamilton, ON, Canada.
Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada.
S.L. Wilkinson
School of Earth, Environment and Society, McMaster University, Hamilton, ON, Canada.
G.J. Verkaik
School of Earth, Environment and Society, McMaster University, Hamilton, ON, Canada.
P.A. Moore
School of Earth, Environment and Society, McMaster University, Hamilton, ON, Canada.
D. Schroeder
Alberta Agriculture and Forestry, Wildfire Management Branch, Government of Alberta, Edmonton, AB, Canada.
J.M. Waddington
School of Earth, Environment and Society, McMaster University, Hamilton, ON, Canada.

Funding Information

:
This research was supported by the Boreal Water Futures project, which is funded by the Global Water Futures programme of the Canada First Research Excellence Fund.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Wildfire likelihood in Canadian treed peatlands based on remote-sensing time-series of surface conditions
2. The Influence of Seismic Lines on Wildfire Potential in the Boreal Region of Northern Alberta, Canada

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Tables

Media

Share Options

Share

Share the article link

Share on social media