Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Evaluation of UAS LiDAR data for tree segmentation and diameter estimation in boreal forests using trunk- and crown-based methods

Publication: Canadian Journal of Forest Research
14 April 2022

Abstract

Very high point density laser scanning data from unmanned aerial systems (UAS) can be used to segment the trunks of individual trees. Such segmentation (e.g., individual trunk segmentation (ITS)) is useful, for example, in the estimation of diameter at breast height (DBH), which in turn is needed for the estimation of other tree and stand attributes, such as stem volume and diameter of the basal area median tree (DGM). In this paper, we assess the estimation of DBH directly from UAS LiDAR data in open and closed canopy conditions that represent the range of operational conditions encountered in boreal forests in Finland. We also compare trunk-based DBH estimates to corresponding estimates from individual tree crown segmentation (ITC) and fuse the results from the trunk- and crown-based estimates. The results showed that trunk segmentation performed slightly better than ITC in open canopy areas, whereas ITC performed better in closed canopy areas. The DBH prediction error was smaller for ITS (3.0 cm) than ITC (3.9 cm) when considering the trees that were recognized by both methods. We also conclude that a hybrid method, where both segmented tree trunks and tree crowns are fused, considerably increases the number of correctly segmented trees but does not decrease the prediction error associated with DGM compared to using either ITC or ITS individually.

Résumé

Les données obtenues par balayage par faisceau laser avec densité de points très élevée par les systèmes d’aéronefs sans pilote (UAS) peuvent être utilisées pour segmenter les troncs des arbres individuels. Une telle segmentation (p. ex., segmentation d’un tronc individuel (STI)) est utile, par exemple, dans l’estimation du diamètre à hauteur d’homme (DHH), laquelle est par ailleurs requise pour l’estimation des attributs des autres arbres et du peuplement forestier, par exemple le volume du tronc et la surface terrière moyenne des arbres (DGM). Dans la présente communication, nous évaluons l’estimation du DHH à partir directement des données de l’UAS LiDAR dans des conditions de couvert ouvert et fermé qui représentent l’éventail des conditions opérationnelles rencontrées dans les forêts boréales en Finlande. Nous comparons également les estimés du DHH fondé sur les troncs aux estimés correspondants de la segmentation de la couronne des arbres individuels (CAI) et nous fusionnons les résultats des estimés fondés sur les troncs et les couronnes. Les résultats ont indiqué que la segmentation des troncs fonctionnait un peu mieux que la CAI dans les secteurs de couverts ouverts alors que la CAI fonctionnait mieux dans des secteurs de couverts fermés. L’erreur de prévision du DHH était plus petite pour la STI (3,0 cm) que la CAI (3,9 cm) lorsqu’on tenait compte des arbres qui étaient reconnus par les deux méthodes. Nous concluons également qu’une méthode hybride où les troncs et les couronnes des arbres segmentés sont fusionnés accroît considérablement le nombre d’arbres correctement segmentés, mais ne diminue par l’erreur de prévision associée à la DGM comparativement à l’utilisation de la CAI ou de la STI individuellement. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Al-Sharadqah A. and Chernov N. 2009. Error analysis for circle fitting algorithms. Electron. J. Stat. 3: 886–911.
Axelsson, P. 2000. DEM generation from laser scanner data using adaptive tin models. International Archives of Photogrammetry and Remote Sensing, XXXIII, Part B3. pp. 85–92.
Ayrey E., Fraver S., Kershaw J.A. Jr., Kenefic L.S., Hayes D., Weiskittel A.R., and Roth B.E. 2017. Layer stacking: a novel algorithm for individual forest tree segmentation from LiDAR point clouds. Can. J. Remote Sens. 43 (1): 16–27.
Bergseng E., Ørka H.O., Næsset E., and Gobakken T. 2015. Assessing forest inventory information obtained from different inventory approaches and remote sensing data sources. Ann. For. Sci. 72: 33–45.
Briechle S., Krzystek P., and Vosselman G. 2020. Classification of tree species and standing dead trees by fusing UAV-based lidar data and multispectral imagery in the 3D deep neural network pointnet++. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2(2020): 203–210.
Bruggisser M., Hollaus M., Otepka J., and Pfeifer N. 2020. Influence of ULS acquisition characteristics on tree stem parameter estimation. ISPRS J. Photogramm. Remote Sens. 168: 28–40.
Dainelli R., Toscano P., Di Gennaro S.F., and Matese A. 2021. Recent advances in unmanned aerial vehicles forest remote sensing — a systematic review. Part II: Research applications. Forests, 12(4): 397.
Dalla Corte A.P., Rex F., Almeida D.R., Sanquetta C., Silva C., Moura M.M., et al. 2020. Measuring individual tree diameter and height using GatorEye high-density UAV-lidar in an integrated crop-livestock-forest system. Remote. Sens. 12: 863.
Dersch S., Heurich M., Krueger N., and Krzystek P. 2021. Combining graph-cut clustering with object-based stem detection for tree segmentation in highly dense airborne lidar point clouds. ISPRS J. Photogramm. Remote. Sens. 172: 207–222.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, Ore., 2–4 August 1996. AAAI Press, pp. 226–231.
Goutte, C., and Gaussier, E. 2005. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the 27th European Conference on IR Research, ECIR 2005, Santiago de Compostela, Spain, 21–23 March 2005. Springer, Berlin Heidelberg. pp. 345–359.
Hamraz H., Contreras M.A., and Zhang J. 2017. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds. Sci. Rep. 7: 6770.
Jaskierniak D., Lucieer A., Kuczera G., Turner D., Lane P.N.J., Benyon R.G., and Haydon S. 2021. Individual tree detection and crown delineation from unmanned aircraft system (UAS) lidar in structurally complex mixed species eucalypt forests. ISPRS J. Photogramm. Remote Sens. 171: 171–187.
Kaartinen H., Hyyppä J., Yu X., Vastaranta M., Hyyppä H., Kukko A., et al. 2012. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens. 4: 950–974.
Koch B., Heyder U., and Weinacker H. 2006. Detection of individual tree crowns in airborne lidar data. Photogramm. Eng. Remote Sens. 72: 357–363.
Korpela I., Tuomola T., and Välimäki E. 2007. Mapping forest plots: an efficient method combining photogrammetry and field triangulation. Silva Fenn. 41(3): 283.
Kukkonen M., Maltamo M., Korhonen L., and Packalen P. 2021. Fusion of crown and trunk detections from airborne UAS based laser scanning for small area forest inventories. Int. J. Appl. Earth Obs. Geoinf. 100: 102327.
Kuželka K., Slavík M., and Surový P. 2020. Very high density point clouds from UAV laser scanning for automatic tree stem detection and direct diameter measurement. Remote Sens. 12(8): 1236.
Liang X., Litkey P., Hyyppä J., Kaartinen H., Vastaranta M., and Holopainen M. 2012. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 50(2): 661–670.
Liang X., Kankare V., Yu X., Hyyppä J., and Holopainen M. 2014. Automated stem curve measurement using terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 52(3): 1739–1748.
Liang X., Wang Y., Pyörälä J., Lehtomäki M., Yu X., Kaartinen H., et al. 2019. Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements. For. Ecosyst. 6: 20.
Lindberg E., Holmgren J., Olofsson K., and Olsson H. 2012. Estimation of stem attributes using a combination of terrestrial and airborne laser scanning. Eur. J. For. Res. 131(6): 1917–1931.
Lindstrom M. and Bates D. 1990. Nonlinear mixed effects models for repeated measures data. Biometrics, 46(3): 673–687.
Ma K., Xiong Y., Jiang F., Chen S., and Sun H. 2021. A novel vegetation point cloud density tree-segmentation model for overlapping crowns using UAV lidar. Remote Sens. 13: 1442.
Mehtätalo L., de-Miguel S., and Gregoire T.G. 2015. Modeling height-diameter curves for prediction. Can. J. For. Res. 45(7): 826–837.
National Land Survey of Finland. 2021a. Municipality map of Finland. Available from https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta?lang=en.
National Land Survey of Finland. 2021b. General map 1:1 M. Available from https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta?lang=en.
Neuville R., Bates J.S., and Jonard F. 2021. Estimating forest structure from UAV-mounted LiDAR point cloud using machine learning. Remote Sens. 13(3): 352.
Nilsson M., Nordkvist K., Jonzén J., Lindgren N., Axensten P., Wallerman J., et al. 2017. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory. Remote Sens. Environ. 194: 447–454.
Peuhkurinen J., Mehtätalo L., and Maltamo M. 2011. Comparing individual tree detection and the area-based statistical approach for the retrieval of forest stand characteristics using airborne laser scanning in Scots pine stands. Can. J. For. Res. 41(3): 583–598.
Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D.; R Core Team. 2021. nlme: linear and nonlinear mixed effects models. R package version 3.1-152. Available from https://CRAN.R-project.org/package=nlme.
Popescu S. and Wynne R. 2004. Seeing the trees in the forest. Photogramm. Eng. Remote Sens. 70: 589–604.
Puliti S., Breidenbach J., and Astrup R. 2020. Estimation of forest growing stock volume with UAV laser scanning data: Can it be done without field data? Remote Sens. 12(8): 1245.
Rabbani, T., and Van Den Heuvel, F. 2005. Efficient Hough transform for automatic detection of cylinders in point clouds. In ISPRS WG III/3, III/4, V/3 Workshop “Laser scanning 2005”, Enschede, the Netherlands, 12–14 September 2005. pp. 60–65.
Räty J., Packalen P., Kotivuori E., and Maltamo M. 2020. Fusing diameter distributions predicted by an area-based approach and individual-tree detection in coniferous-dominated forests. Can. J. For. Res. 50(2): 113–125.
Schneider F., Kükenbrink D., Schaepman M., Schimel D., and Morsdorf F. 2019. Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR. Agric. For. Meteorol. 268: 249–257.
Tang S., Dong P., and Buckles B.P. 2013. Three-dimensional surface reconstruction of tree canopy from lidar point clouds using a region-based level set method. Int. J. Remote Sens. 34(4): 1373–1385.
Vauhkonen J., Ene L., Gupta S., Heinzel J., Holmgren J., Pitkanen J., et al. 2012. Comparative testing of single-tree detection algorithms under different types of forest. Forestry, 85: 27–40.
Wang X., Zhang Y., and Luo Z. 2020. Combining trunk detection with canopy segmentation to delineate single deciduous trees using airborne LiDAR data. IEEE Access. 8: 99783–99796.
Wieser M., Mandlburger G., Hollaus M., Otepka J., Glira P., and Pfeifer N. 2017. A case study of UAS borne laser scanning for measurement of tree stem diameter. Remote Sens. 9(11): 1154.
Wilkes P., Lau A., Disney M., Calders K., Burt A., Gonzalez de Tanago J., et al. 2017. Data acquisition considerations for terrestrial laser scanning of forest plots. Remote Sens. Environ. 196: 140–153.
Windrim L. and Bryson M. 2020. Detection, segmentation, and model fitting of individual tree stems from airborne laser scanning of forests using deep learning. Remote Sens. 12(9): 1469.
Wu X., Shen X., Cao L., Wang G., and Cao F. 2019. Assessment of individual tree detection and canopy cover estimation using unmanned aerial vehicle based light detection and ranging (UAV-LiDAR) data in planted forests. Remote Sens. 11(8): 908.
Xia S., Wang C., Pan F., Xi X., Zeng H., and Liu H. 2015. Detecting stems in dense and homogeneous forest using single-scan TLS. Forests, 6(11): 3923–3945.
Yan W., Guan H., Cao L., Yu Y., Li C., and Lu J. 2020. A self-adaptive mean shift tree-segmentation method using UAV LiDAR data. Remote Sens. 12(3): 515.
Zaforemska A., Xiao W., and Gaulton R. 2019. Individual tree detection from UAV lidar data in a mixed species woodland. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W13: 657–663.

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 52Number 5May 2022
Pages: 674 - 684

History

Received: 5 August 2021
Accepted: 18 January 2022
Version of record online: 14 April 2022

Permissions

Request permissions for this article.

Key Words

  1. forest inventory
  2. laser scanning
  3. drone
  4. segmentation

Mots-clés

  1. inventaire forestier
  2. balayage par faisceau laser
  3. drone
  4. segmentation

Authors

Affiliations

Mikko Kukkonen [email protected]
Natural Resources Institute Finland, Yliopistokatu 6 B, Joensuu 80100, Finland.
Matti Maltamo
School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, Joensuu FI-80101 12, Finland.
Lauri Korhonen
School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, Joensuu FI-80101 12, Finland.
Petteri Packalen
Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki 00790, Finland.

Funding Information

:
This work was supported by the Academy of Finland through the project Unmanned Aerial Vehicles in Forest Remote Sensing (the Research Council for Biosciences, Health and the Environment) under grant 323484, and by the Finnish Flagship Programme for the Forest-Human-Machine Interplay — Building Resilience, Redefining Value Networks and Enabling Meaningful Experiences (UNITE) under grants 337127 and 337655.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Phenotyping of architecture traits of loblolly pine trees using stereo machine vision and deep learning: Stem diameter, branch angle, and branch diameter
2. Comparison of Errors Produced by ABA and ITC Methods for the Estimation of Forest Inventory Attributes at Stand and Tree Level in Pinus radiata Plantations in Chile

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media