How mounds are made matters: seismic line restoration techniques affect peat physical and chemical properties throughout the peat profile

Publication: Canadian Journal of Forest Research
22 July 2022

Abstract

Seismic lines are prominent linear disturbances across boreal Canada with large-scale consequences to wildlife and ecosystem function. Although seismic line restoration has been observed to improve tree growth and survival, application in peatlands has been shown to alter ecosystem functions such as hydrology and carbon storage. The most common active restoration method is called mechanical mounding, where the classic technique inverts the peat profile. New mounding methods that maintain the peat profile may provide benefits by preserving existing vegetation and reducing disturbance. To determine the effects of different mounding methods on soil quality, we collected and analyzed peat cores from two different sites for various soil properties (C/N ratios, δ13C, δ15N, and Fourier transform infrared (FTIR) spectroscopy humification indices). Vegetation surveys were also conducted. The two sites are both a collection of seismic lines crossing poor fens in Alberta. One site was treated with the classic method, while the other was treated with two new mounding methods. Classic mechanical mounding significantly increased the degree of decomposition, indicative of lower substrate quality. Mechanical mounding also greatly reduced moss cover and introduced large amounts of bare ground cover. The two newer mounding methods did not result in these changes and were largely comparable to natural peat properties and vegetation communities. Preserving the peat profile in new mounding methods may support faster return of ecosystem function.

Résumé

Les lignes sismiques sont des perturbations linéaires importantes dans la région boréale du Canada qui ont des conséquences à grande échelle sur la faune et la fonction des écosystèmes. Même si on a observé que la restauration des lignes sismiques améliore la croissance et la survie des arbres, on a démontré que son application dans les tourbières modifie les fonctions de l'écosystème telles que l'hydrologie et le stockage du carbone. La méthode de restauration active la plus courante s'appelle le buttage mécanique où la technique classique inverse le profil de la tourbe. De nouvelles méthodes de buttage qui maintiennent le profil de la tourbe peuvent présenter des avantages en préservant la végétation existante et en réduisant les perturbations. Pour déterminer les effets de différentes méthodes de buttage sur la qualité du sol, on a prélevé et analysé des carottes de tourbe sur deux sites différents pour confirmer diverses propriétés du sol (rapport C/N, δ13C, δ15N, indices d'humification par spectroscopie infrarouge à transformée de Fourier (FTIR)). Des études de la végétation ont également été menées. Les deux sites correspondent à un ensemble de lignes sismiques traversant des tourbières pauvres en Alberta. La méthode classique a été utilisée pour traiter un site tandis que l'autre a été traité avec deux nouvelles méthodes de buttage. Le buttage mécanique classique a augmenté de manière significative le degré de décomposition, ce qui indique une qualité inférieure du substrat. Le buttage mécanique a également réduit considérablement la couverture de mousse et a introduit de grandes quantités de couverture de sol nu. Les deux méthodes de buttage plus récentes n'ont pas entraîné ces changements et étaient largement comparables aux propriétés de la tourbe naturelle et aux communautés végétales. La préservation du profil de la tourbe dans les nouvelles méthodes de buttage peut favoriser un retour plus rapide des fonctions de l'écosystème. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Asada T., Warner B.G., Aravena R. 2005a. Effects of the early stage of decomposition on change in carbon and nitrogen isotopes in Sphagnum litter. J. Plant Interact. 1(4): 229–237.
Asada T., Warner B.G., Schiff S.L. 2005b. Effects of shallow flooding on vegetation and carbon pools in boreal peatlands. Appl. Veg. Sci. 8: 199–208.
Biester H., Knorr K.H., Schellekens J., Basler A., Hermanns Y.M. 2014. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences, 11: 2691–2707.
Bilodeau-Gauthier S., Paré D., Messier C., Bélanger N. 2011. Juvenile growth of hybrid poplars on acidic boreal soil determined by environmental effects of soil preparation, vegetation control, and fertilization. For. Ecol. Manage. 261(3): 620–629.
Bilodeau-Gauthier S., Paré D., Messier C., Bélanger N. 2013. Root production of hybrid poplars and nitrogen mineralization improve following mounding of boreal podzols. Can. J. For. Res. 43(12): 1092–1103.
Broder T., Blodau C., Biester H., Knorr K.H. 2012. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences, 9: 1479–1491.
Cocozza C., D'Orazio V., Miano T.M., Shotyk W. 2003. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Org. Geochem. 34(1): 49–60.
Dabros A., Pyper M., Castilla G. 2018. Seismic lines in the boreal and arctic ecosystem of North America: environmental impacts, challenges, and opportunities. Environ. Rev. 26: 214–229.
Damman A.W.H. 1988. Regulation of nitrogen removal and retention in Sphagnum bogs and other peatlands. Oikos, 51: 291–305.
Davidson S.J., Goud E.M., Franklin C., Neilsen S.E., Strack M. 2020. Seismic line disturbance alters soil physical and chemical properties across boreal forest and peatland soils. Front. Earth Sci. 8: 281.
Drollinger S., Knorr K.H., Knierzinger W., Glatzel S. 2020. Peat decomposition proxies of Alpine bogs along a degradation gradient. Geoderma, 369: 114331.
Drollinger S., Kuzyakov Y., Glatzel S. 2019. Effects of peat decomposition on δ13C and δ15N depth profiles of Alpine bogs. Catena, 178: 1–10.
Echiverri L.F.I., Macdonald S.E., Nielsen S.E. 2020. Disturbing to restore? Effects of mounding on understory communities on seismic lines in treed peatlands. Can. J. For. Res. 50(12): 1340–1351.
Filicetti A.T., Cody M., Nielsen S.E. 2019. Caribou conservation: restoring trees on seismic lines in Alberta, Canada. Forests, 10: 185–203.
Frey B., Kremer J., Rüdt A., Sciacca S., Matthies D., Lüscher P. 2009. Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur. J. Soil Biol. 45: 312–320.
Gauthier T.J., McCarter C.P.R., Price J.S. 2018. The effect of compression on Sphagnum hydrophysical properties: implications from increasing hydrological conductivity in restored cutover peatlands. Ecohydrology, 11(8): e2020.
Hodgkins S.B. 2016. Changes in organic matter content chemistry and methanogenesis due to permafrost thaw in a subarctic peatland. Doctoral dissertation. Department of Earth, Ocean, and Atmospheric Science, College of Arts and Sciences, Florida State University. Tallahassee, Florida, USA.
Hodgkins S.B., Richardson C.J., Dommain R., Wang H., Glaser P., Verbeke B., et al. 2018. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9(1): 3640.
Kim Y., Ullah S., Moore T.R., Roulet N.T. 2014. Dissolved organic carbon and total dissolved nitrogen production by boreal soils and litter: the role of flooding, oxygen concentration, and temperature. Biochemistry, 118: 35–48.
Kleinke K. 2021. Effects of restoring peatland seismic lines on soil properties in boreal Alberta, Canada. Masters’ thesis. Department of Geography and Environmental Management, University of Waterloo. Waterloo, Ontario, Canada.
Kool D.M., Buurman P., Hoekman D.H. 2006. Oxidation and compaction of a collapsed peat dome in Central Kalimantan. Geoderma, 137: 217–225.
Kozlowski T.T. 1999. Soil compaction and growth of woody plants. Scand. J. For. Res. 14: 596–619.
Krüger J.P., Leifeld J., Glatzel S., Szidat S., Alewell C. 2015. Biogeochemical indicators of peatland degradation — a case study of a temperate bog in northern Germany. Biogeosciences, 12: 2861–2871.
Kuhry P., Vitt D. H. 1996. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology, 77(1): 271–275.
Lafleur B., Pare D., Fenton N.J., Bergeron Y. 2011a. Growth and nutrition of black spruce seedlings in response to disruption of Pleurozium and Sphagnum moss carpets in boreal forested peatlands. Plant Soil, 345: 141–153.
Lafleur B., Paré D., Fenton N.J., Bergeron Y. 2011b. Growth of planted black spruce seedlings following mechanical site preparation in boreal forested peatlands with variable organic layer thickness: 5-year results. Ann. For. Sci. 68: 1291–1302.
Lee P., Boutin S. 2006. Persistence and developmental transition of wide seismic lines in the western boreal plains of Canada. J. Environ. Manage. 78: 240–250.
Lepilin D., Laurén A., Uusitalo J., Tuittila E.S. 2019. Soil deformation and its recovery in logging trails of drained boreal peatlands. Can. J. For. Res. 49: 743.
Lieffers V.J., Caners R.T., Ge H. 2017. Re-establishment of hummock topography promotes tree regeneration on highly disturbed moderate-rich fens. J. Environ. Manage. 197: 258–264.
Limpens J., Berendse F., Blodau C., Canadell J.G., Freeman C., Holden J., et al. 2008. Peatlands and the carbon cycle: from local processes to global implications — a synthesis. Biogeosciences, 5: 1475–1491.
Liu H., Lennartz B. 2018. Hydraulic properties of peat soils along a bulk density gradient — a meta study. Hydrol. Processes, 33(1): 101–114.
Lovitt J., Rahman M.M., Saraswati S., McDermid G.J., Strack M., Xu B. 2018. UAV remote sensing can reveal the effects of low-impact seismic lines on surface morphology, hydrology, and methane (CH4) release in a boreal treed bog. Biogeosciences, 123(3): 1117–1129.
Malmer N., Holm E. 1984. Variation in the C/N-quotient of peat in relation to decomposition rate and age determination with 210 Pb. Oikos, 43(2): 171–182.
McCarter C.P.R., Price J.S. 2015. The hydrology of the Bois-des-Bel peatland restoration: hydrophysical properties limiting connectivity between regenerated sphagnum and remnant vacuum harvested peat deposit. Ecohydrology, 8(2): 173–187.
Mellegård H., Stalheim T., Hormazabal V., Granum P.E., Hardy S.P. 2009. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food- borne bacteria. Lett. Appl. Microbiol. 49(1): 85–90.
Nelson T., Jobidon R. 2011. How to shift unproductive Kalmia angustifoliaRhododendron groenlandicum heath to productive conifer plantation. Can. J. For. Res. 36(10): 2364–2376.
R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria https://www.R-project.org/
Smolander A., Heiskanen J. 2006. Soil N and C transformations in two forest clear-cuts during three years after mounding and inverting. Can. J. Soil Sci. 87(3): 251–258.
Strack M., Hayne S., Lovitt J., McDermid G.J., Rahman M.M., Saraswati S., Xu B. 2019. Petroleum exploration increases methane emissions from northern peatlands. Nat. Commun. 10: 2804.
Sutton R.F. 1993. Mounding site preparation: a review of European and North American experience. New For. 7: 151–192.
Trettin C.C., Jurgensen M.F., Gale M.R., McLaughlin J.W. 2011. Recovery of carbon and nutrient pools in northern forested wetland 11 years after harvesting and site preparation. For. Ecol. Manage. 262: 1826–1833.
Xu B. 2019. Hummock transfer technique (HTT) for reclamation of temporary access features in peatland. Technical note #30. Peatland restoration. NAIT Centre for Boreal Research. Peace River, Alberta, Canada.

Supplementary material

Supplementary Material 1 (DOCX / 108 KB).

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 52Number 6June 2022
Pages: 963 - 976

History

Received: 20 January 2022
Accepted: 21 April 2022
Accepted manuscript online: 3 May 2022
Version of record online: 22 July 2022

Permissions

Request permissions for this article.

Key Words

  1. organic soil
  2. bulk density
  3. mechanical mounding
  4. C/N ratio
  5. stable isotopes

Mots-clés

  1. sol organique
  2. densité apparente
  3. buttage mécanique
  4. rapport C/N
  5. isotopes stables

Authors

Affiliations

Kimberly Kleinke
Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Scott J. Davidson
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
Megan Schmidt
Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Bin Xu
Northern Alberta Institute of Technology Centre for Boreal Research, Edmonton, AB T5G 3K4, Canada
Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Funding Information

Boreal Ecosystem Recovery and Assessment
Natural Sciences and Engineering Research Council of Canada Alliance: ALLRP 548285-19
Alberta-Pacific Forest Industries Inc.
ConocoPhillips Canada Resources Corp.
Imperial Oil Resources Ltd.
Canadian Forest Service’s Northern Forestry Centre
Government of Canada through the Environmental Damages Fund: EDF-AB-2018c009

Funding Information

This research is part of the Boreal Ecosystem Recovery and Assessment (BERA) project (www.bera-project.org), and was supported by a Natural Sciences and Engineering Research Council of Canada Alliance Grant (ALLRP 548285-19) in conjunction with Alberta-Pacific Forest Industries Inc., Canadian Natural Resources Ltd., Cenovus Energy, ConocoPhillips Canada Resources Corp., Imperial Oil Resources Ltd., Canadian Forest Service’s Northern Forestry Centre, and Alberta Biodiversity Monitoring Institute. Mounding at the Brazeau site was funded by the Government of Canada through the Environmental Damages Fund (EDF-AB-2018c009).

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Mounding treatments set back bryophyte recovery on linear disturbances in treed peatlands
2. Soil mounding as a restoration approach of seismic lines in boreal peatlands: implications on microtopography

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media